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Given an ample line bundle L on a geometrically reduced projective scheme defined

over an arbitrary non-Archimedean field, we establish a differentiability property for

the relative volume of two continuous metrics on the Berkovich analytification of L,

extending previously known results in the discretely valued case. As applications, we

provide fundamental solutions to certain non-Archimedean Monge–Ampère equations

and generalize an equidistribution result for Fekete points. Our main technical input

comes from determinant of cohomology and Deligne pairings.

Introduction

In [5], a variational approach to the resolution of complex Monge–Ampère equations

was introduced, inspired by the classical work of Aleksandrov on real Monge–Ampère

equations and the Minkowski problem. A key ingredient in this approach is a differen-

tiability property for relative volumes, previously established in [3].

This variational approach was adapted in [7] to non-Archimedean Monge–

Ampère equations in the context of Berkovich geometry. While most of the results in

that paper assumed the non-Archimedean ground field K to be discretely valued and of

residue characteristic 0, the proof of the differentiability property required a stronger

algebraicity assumption that was later removed in [11]. Building on these results, a
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Differentiability of Relative Volumes 6215

version for trivially valued fields was obtained in [10], with a view towards the study of

K-stability [9].

The main result of the present paper establishes the differentiability property

over an arbitrary non-Archimedean field. While only one ingredient in the variational

approach, it can already be used to construct fundamental solutions to Monge–Ampère

equations and to generalize the results of [6] on equidistribution of Fekete points. Our

strategy follows overall that of [11], itself inspired by techniques of Abbes–Bouche [1]

and Yuan [33] in the context of Arakelov geometry. As in [6], the extra technical input

enabling us to deal with possibly non-Noetherian valuation rings is provided by the

Deligne pairings machinery.

Working over non-discretely valued fields arises naturally in several contexts.

First, Berkovich analytifications over trivially valued fields form a natural setting to

study K-stability, as advocated in [9]. Next, any non-Archimedean field that is non-

trivially valued and algebraically closed (such as Cp) is densely valued. Another instance

is in Arakelov theory, where computing the relative height of a projective variety X

defined over the function field F of an adelically polarized projective variety B over

Q leads naturally to a bunch of non-Archimedean absolute values on F satisfying a

product formula. Here, the absolute values over a prime p are induced by Zariski dense

points of the Berkovich analytification of B⊗Qp and are usually not discrete. For details

about this generalization of Moriwaki’s heights, we refer to [20, §3].

Differentiability of relative volumes

In what follows, K denotes an arbitrary (complete) non-Archimedean field, X is a

geometrically reduced projective K-scheme, and L is an ample line bundle on X. Set

n := dim X, and denote by Xan the associated Berkovich analytic space.

The data of a continuous metric φ on (the analytification of) L induces for

each m ∈ N a supnorm ‖ · ‖mφ on the space of sections H0(mL) = H0(X, mL). Here

and throughout the paper, we use additive notation for line bundles and metrics, see

§1.2. Given a second continuous metric ψ on L, one defines the relative volume of the

associated supnorms as

vol(‖ · ‖mφ , ‖ · ‖mψ) := log

(
det ‖ · ‖mψ

det ‖ · ‖mφ

)
,

where det ‖·‖mφ , det ‖·‖mψ denote the induced norms on the determinant line det H0(mL).

This notion of relative volume, introduced in [6, 14], can be described in terms of (virtual)
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6216 S. Boucksom et al.

lengths in the discretely valued case as in [11]. As a consequence of Chen and Maclean’s

work [14], it is proved in [6, Theorem 9.8] that the relative volume of φ, ψ

vol(L, φ, ψ) := lim
m→∞

n!

mn+1 vol(‖ · ‖mφ , ‖ · ‖mψ)

exists in R.

When K is non-trivially valued, a continuous metric on L is called psh (a

shorthand for plurisubharmonic) if it can be written as a uniform limit of metrics on

L induced by nef models of L. This definition, which goes back to the work of Shou-Wu

Zhang [34], is not adapted to the trivially valued case, where the trivial metric on L is

the only model metric. An alternative description of psh metrics relying on Fubini–Study

metrics can, however, be adopted [6, 10], the upshot being that a continuous metric φ

on L is psh if and only if it becomes psh after base change to some (equivalently, any)

non-Archimedean extension of K. Both approaches give the same psh metrics on L in the

non-trivially valued case and the latter works also in the trivially valued case.

For a continuous psh metric φ on L, a positive Radon measure (ddcφ)n on Xan

was constructed by Chambert-Loir [13] for K discretely valued; the general case can

be obtained from [19] by base change to an algebraically closed non-trivially valued

extension of K, or directly from the local approach in [12]. The main result of the present

paper is as follows.

Theorem A. Let K be an arbitrary non-Archimedean field, X a projective, geomet-

rically reduced K-scheme, and L an ample line bundle on X. For any continuous psh

metric φ on L and any continuous function f on Xan, we then have

d

dt

∣∣∣∣
t=0

vol(L, φ + tf , φ) =
∫

Xan
f (ddcφ)n. (0.1)

Such a differentiability property was already predicted by Kontsevich and

Tschinkel in their pioneering investigations of non-Archimedean pluripotential theory

[25]. A version of Theorem A when L is merely nef will be established in a subsequent

paper.

In the discretely valued case, Theorem A was proved in [11] and the present

proof follows the same overall strategy. As a first step, we reduce to the case where K

is algebraically closed and non-trivially valued, and φ = φL , f = ±φD are respectively

induced by an ample model L of L and a vertical effective Cartier divisor D, both living
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Differentiability of Relative Volumes 6217

on some model X of X. A filtration argument that goes back to Yuan’s work [33] yields

an estimate for

vol(‖ · ‖m(φ+f ), ‖ · ‖mφ)

in terms of the content h0(D, mA|D) of the torsion K◦-module H0(D, mA|D), where A is a

certain ample line bundle on X , and the content is a version of the length adapted to the

non-Noetherian valuation ring K◦. The key ingredient is then the asymptotic Riemann–

Roch formula

h0(D, mA|D) ∼ mn

n!

∫
Xan

φD (ddcφA)n,

which we obtain as a consequence of the results on determinant of cohomology and

metrics on Deligne pairings established in [6].

Applications to non-Archimedean pluripotential theory

The relative Monge–Ampère energy of two continuous psh metrics φ, ψ on L is

defined as

E(φ, ψ) := 1

n + 1

n∑
j=0

∫
Xan

(φ − ψ)(ddcφ)j ∧ (ddcψ)n−j,

where φ − ψ is a continuous function on Xan, in our additive notation for metrics. Given

any other continuous psh metric φ′, we have

d

dt

∣∣∣∣
t=0

E
(
(1 − t)φ + tφ′, ψ

) =
∫

Xan
(φ′ − φ) (ddcφ)n,

which means that φ �→ E(φ, ψ) is the unique antiderivative of the Monge–Ampère

operator φ �→ (ddcφ)n that vanishes at ψ , and implies the cocycle property

E(φ1, φ2) = E(φ1, φ3) + E(φ3, φ2)

for any three continuous psh metrics φ1, φ2, φ3 on L.

Next, the psh envelope P(φ) of a continuous metric φ on L is defined as the

pointwise supremum of the family of (continuous) psh metrics ψ on L such that ψ ≤ φ.

We say that continuity of envelopes holds for (X, L) if P(φ) is continuous, hence also psh,

for all continuous metrics φ. As observed in [6, Lemma 7.30], continuity of envelopes is
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6218 S. Boucksom et al.

equivalent to the fact that the usc upper envelope of any bounded above family of psh

metrics on L remains psh, a classical property in (complex) pluripotential theory which

leads to the natural conjecture that continuity of envelopes holds as soon as X is normal.

At present, continuity of envelopes has been established when X is smooth, and

one of the following holds:

• X is a curve, as a consequence of Thuillier’s work [31] (see [21]);

• K discretely or trivially valued, of residue characteristic 0 [8, 10], building

on multiplier ideals and the Nadel vanishing theorem;

• K is discretely valued of characteristic p, (X, L) is defined over a function

field of transcendence degree d, and resolution of singularities is assumed

in dimension d + n [21], replacing multiplier ideals with test ideals.

Generalizing [11], which dealt with the discretely valued case, the main result

of [6, Theorem A] states that any two continuous metrics φ, ψ on L with continuous

envelope satisfy

vol(L, φ, ψ) = E(P(φ), P(ψ)). (0.2)

In the present non-Archimedean context, the relative Monge–Ampère energy can

be interpreted as a local height, and (0.2) as a local Hilbert–Samuel formula. Combined

with Theorem A, it enables us to prove the following analogue of [3, Theorem B].

Theorem B. Assume that continuity of envelopes holds for (X, L), and let φ be a

continuous metric on L.

(i) The Monge–Ampère measure (ddcP(φ))n is supported on the contact locus

{P(φ) = φ}. In other words, the orthogonality property

∫
Xan

(φ − P(φ))(ddcP(φ))n = 0

is satisfied.

(ii) For any continuous function f and continuous psh metric ψ , we have

d

dt

∣∣∣∣
t=0

E(P(φ + tf ), ψ) =
∫

Xan
f (ddcP(φ))n.
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It is in fact essentially formal to show that (i) and (ii) are equivalent, and are

also equivalent to the special case of (ii) where φ is psh, which corresponds precisely to

Theorem A, thanks to (0.2).

Using Theorem B and the variational argument of [5, 7], we are able to produce

’fundamental solutions’ to Monge–Ampère equations, as follows.

Corollary C. Assume continuity of envelopes for (X, L). Let x ∈ Xan be a nonpluripolar

point, φ a continuous metric on L, and assume that x is L-regular, in the sense that

φx := sup{ψ psh metric on L | ψ(x) ≤ φ(x)}

is continuous (and hence psh). Then

V−1(ddcφx)n = δx,

with V := (Ln) and δx the Dirac mass at x.

Here again, L-regularity is expected to be automatic for nonpluripolar points

on a normal variety. It is established in [9, Theorem 5.13] when X is smooth and K is

trivially or discretely valued, of residue characteristic 0.

As a final consequence of Theorem A, we generalize the equidistribution of

Fekete points in Berkovich spaces, which was established in [6] following the variational

strategy going back to [4] in the complex analytic case, under assumptions guaranteeing

the differentiability property (ii) of Theorem B. For any basis s = (s1, . . . , sN) of H0(X, L),

the Vandermonde (or Slater) determinant det(si(xj))1≤i,j≤N can be seen as a global section

det(s) ∈ H0(XN , L�N). Given a continuous metric φ on L, a Fekete configuration for φ is

a point P ∈ (XN)an achieving the supremum of | det(s)|φ�N , a condition that does not

depend on the choice of the basis s. By Theorem A, the differentiability property (0.1)

holds for any continuous psh metric φ of L and hence we get the following result as a

direct application of [6, Theorem 10.10].

Corollary D. Let K be any non-Archimedean field, and let L be an ample line bundle

on a projective, geometrically reduced K-scheme X. Set n := dim X, Nm := h0(X, mL) and

V := (Ln). Pick a continuous psh metric φ on L, and choose for each m � 1 a Fekete

configuration Pm ∈ (XNm)an for mφ. Then Pm equidistributes to the probability measure

V−1(ddcφ)n, i.e.

lim
m→∞

∫
Xan

f δPm
=

∫
Xan

f V−1(ddcφ)n.
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6220 S. Boucksom et al.

for each continuous function f on Xan where δPm
is the discrete probability measure on

Xan obtained by averaging over the components of the image of Pm in (Xan)Nm .

Organization of paper

Section 1 collects preliminary material on norms, metrics, and their relative volumes.

We recall also properties of the energy and the Monge–Ampère measures. Section 2

reviews some facts on the determinant of cohomology, and proves the key Riemann–

Roch type formula. In Section 3, we prove first Theorem A. Assuming continuity of

envelopes, we then deduce Corollary B and Corollary C.

Notation and Conventions

Throughout the paper, we work over a non-Archimedean field K, that is, a field

complete with respect to a non-Archimedean absolute value | · |, which might be the

trivial absolute value. The corresponding valuation is denoted by vK := − log | · |. The

valuation ring, maximal ideal and residue field are respectively denoted by

K◦ := {a ∈ K | |a| ≤ 1}, K◦◦ := {a ∈ K | |a| < 1}, K̃ := K◦/K◦◦.

We assume that the reader is familiar with the basics of non-Archimedean geometry

given in [2]. If X is a scheme of finite type over K, we denote by Xan its Berkovich

analytification. The space of continuous, real valued functions on Xan is denoted

by C0(Xan).

We use additive notation for line bundles and metrics. If L, M are line bundles

on X endowed with metrics φ and ψ , then L + M denotes the tensor product of the line

bundles and φ + ψ the induced metric, respectively. The norm on L associated to φ is

denoted by | · |φ and ‖ · ‖φ is the associated supnorm on H0(X, L), which is a norm if X is

reduced. See §1.2 for more details.

For line bundles L1, . . . , Ln on an n-dimensional projective scheme X over a field,

we use (L1 · . . . · Ln) for the intersection number of the 1st Chern classes of L1, . . . , Ln.

Usually, we will have L = L1 = · · · = Ln and we then simply write (Ln) for this

intersection number, which agrees with the degree of X with respect to L.

1 Preliminaries

We collect here some background results on the norms, lattices, models, Monge–

Ampère measures, energy, and volumes. In what follows, X denotes an n-dimensional,
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Differentiability of Relative Volumes 6221

geometrically reduced projective K-scheme. Recall that geometrically reduced simply

amounts to X reduced whenever K is perfect.

1.1 Norms, lattices, and content

Let V be a finite dimensional K-vector space, and set r = dim V. By a norm on V, we

always mean an ultrametric norm ‖ · ‖ : V → R≥0 compatible with the given absolute

value of K. It induces a determinant norm det ‖ · ‖ on the determinant line det V = �rV,

given by

det ‖τ‖ := inf
τ=v1∧···∧vr

‖v1‖ · · · ‖vr‖

for any τ ∈ det V. Given two norms ‖ · ‖, ‖ · ‖′, the relative volume of ‖ · ‖ with respect to

‖ · ‖′ is defined as

vol(‖ · ‖, ‖ · ‖′) := log
(

det ‖τ‖′

det ‖τ‖
)

for any nonzero τ ∈ det V. For more details on the determinant norm and relative

volumes, we refer to [6, §2.1–2.3].

A lattice in V is a finitely generated K◦-submodule V ⊂ V that spans V over K.

The lattice norm ‖ · ‖V associated to a lattice V is given for v ∈ V by

‖v‖V := infa∈K, v∈aV |a|.

Relative volumes of lattice norms admit the following algebraic interpretation. By

[29, Proposition 2.10 (i)] (see also [6, Lemma 2.17]), every finitely presented, torsion

K◦-module M satisfies

M ∼= K◦/(a1) ⊕ . . . ⊕ K◦/(ar)

for some nonzero a1, . . . , ar ∈ K◦◦, where r and the sequence vK(ai) are further uniquely

determined by M, up to reordering. The content (this quantity was called length in [29],

and corresponds to − log of the content as defined in [30]) of M is defined as

c(M) =
r∑

i=1

vK(ai) ∈ R≥0.
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When K is discretely valued with uniformizer π ∈ K◦◦, then c(M) is the usual length of

M, multiplied by vK(π) [6, Example 2.19].

Now every finitely presented torsion K◦-module M arises as a quotient M = V/V ′

for lattices V ′ ⊂ V in a finite dimensional K-vector space, and

c(M) = vol(‖ · ‖V , ‖ · ‖V ′). (1.1)

1.2 Metrics

As in [6, §5], we use additive notation for metrics on a line bundle L over X. Then a metric

φ on L is a family of functions φx : L ⊗X H (x) → R∪ {∞} such that | |φx
:= e−φx is a norm

on the 1-dimensional H (x)-vector space L ⊗X H (x) for every x ∈ Xan. Here, H (x) is

the completed residue field of x endowed with its canonical absolute value [2, Remark

1.2.2]. We usually skip the x and write simply | |φ for the norms. Note that L ⊗X H (x) is

the non-Archimedean analogue of the fiber of a holomorphic line bundle.

Given two metrics φ, ψ on line bundles L, M over X, we denote by φ ± ψ

the induced metric on L ± M = L ⊗ M±1. The corresponding norms thus satisfy

| · |φ±ψ = | · |φ ⊗ | · |±1
ψ .

A metric φ on L is called continuous if the function x �→ |t(x)|φ , induced by any

local section t of L, is continuous with respect to the Berkovich topology. For s ∈ H0(X, L),

the associated supremum norm is denoted by

‖s‖φ := sup
x∈Xan

|s(x)|φ .

1.3 Models

In this paper, a model X of X is a flat projective K◦-scheme, together with an

identification of the generic fiber Xη of X → Spec(K◦) with X. There is a canonical

reduction map redX : Xan → Xs to the special fiber Xs of X (see [22, Remark 2.3] and

[23, §2] for details).

We say that a model X of X is dominated by another model X ′ if the identity

on X extends to a (unique) morphism X ′ → X over K◦. This induces a partial order on

the set of models of X modulo isomorphism, which turns it into a directed system.

If K is algebraically closed and nontrivially valued, then it follows from the

reduced fiber theorem (see for instance [6, Theorem 4.20]) that models X with reduced

special fiber Xs are cofinal among all models. On the other hand, in the trivially valued

case, X is its only model, up to isomorphism.
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Now let L be a line bundle on X. A model (X , L ) of (X, L) consists of a model

X of X and a line bundle L on X together with an identification L |Xη
� L compatible

with the identification Xη � X. We then say that L is a model of L determined on X .

Every model of the trivial line bundle L = OX determined on a model X is of the form

L = OX (D), where D is a Cartier divisor which is vertical, that is, supported in the

special fiber.

Lemma 1.1. Assume K is algebraically closed and non-trivially valued, and let (Li) be

a finite collection of ample line bundles on X. Then models X of X that have reduced

special fiber and such that all Li extend to an ample Q-line bundles on X are cofinal in

the set of all models.

Proof. By [22, Proposition 4.11, Lemma 4.12], every model X of X is dominated by a

model X ′ on which all Li extend to ample Q-line bundles L′
i. By [6, Theorem 4.20], the

integral closure of X ′ in its generic fiber Xη � X is a model X ′′ with reduced special

fiber, which dominates X ′ via a finite morphism μ : X ′′ → X ′. As a result, μ∗L ′
i is an

ample Q-line bundle extending Li, and we are done. �

If (X , L ) is a model of (X, L), then H0(X , L ) is a lattice in H0(X, L). Indeed,

it follows from the direct image theorem given in [32, Theorem 3.5] that H0(X , L ) is a

finitely generated K◦-module, while flat base change implies H0(X , L )⊗K◦K � H0(X, L).

Recall that a section t of a line bundle over a scheme Z is regular if its zero

subscheme is a Cartier divisor, that is, if the corresponding function in any local

trivialization of the line bundle is a nonzero divisor. The section t is relatively regular

with respect to a flat morphism Z → S if its zero subscheme is a Cartier divisor and is

flat over S.

Given a model (X , L ) of (X, L), it follows from [16, 11.3.7] that a section

t ∈ H0(X , L ) is relatively regular (with respect to the structure morphism X → Spec K◦)

if and only if its restriction to the special fiber Xs is regular. By [6, Proposition A.15], if

L is ample then H0(X , mL ) admits relatively regular sections for all m � 1. For later

use, we note:

Lemma 1.2. Let (X , L ) be a model of (X, L), and D be an effective vertical Cartier

divisor. If t ∈ H0(X , L ) is a relatively regular section, then t|D is regular on D.

Proof. The statement is local, and thus reduces to the following. Let A be a flat, finite

type K◦-algebra, f ∈ A a relatively regular function, and a ∈ A a nonzero divisor whose
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image in A⊗K◦ K is invertible. We have to show that the image of f in A/(a) is a nonzero

divisor. To see this, pick g, h ∈ A such that fg = ah. We then need to prove that g ∈ (a).

Since f is relatively regular, A/(f ) is flat over K◦, and the map A/(f ) → A/(f ) ⊗K◦ K is

thus injective. The image of a in A/(f ) ⊗K◦ K being invertible, the image of h in A/(f ) ↪→
A/(f ) ⊗K◦ K is zero, and hence h ∈ (f ), that is, h = h′f for some h′ ∈ A. Then fg = ah′f ,

and hence g = ah′ ∈ (a) as f is a nonzero divisor. �

1.4 Model metrics

Let L be a line bundle on X. To every model (X , L ) of (X, L) is associated a continuous

metric φL on L, determined as follows: every point of Xan belongs to the affinoid

domain red−1
X (U) induced by an affine open subset U of X on which L admits a

trivializing section τ , and φL is determined by requiring that |τ |φL
≡ 1 on red−1

X (U).

This construction is invariant under pull-back to a higher model, that is, φμ∗L = φL for

any morphism of models μ : X ′ → X . We refer to [6, 5.3] and [22, §2] for more details.

A model metric on L is defined as a continuous metric of the form φ = m−1φL

where L is a model of mL for some nonzero m ∈ N. We say that φ is determined by the

Q-model m−1L .

A model function is a continuous function on Xan corresponding to a model

metric on the trivial line bundle OX . It is thus determined by a vertical Q-Cartier divisor

D on some model X of X, and we write φD for the corresponding model function. Model

functions form a Q-vector space of continuous functions, which is stable under max.

When K is non-trivially valued, model functions further separate points, and hence are

dense in C0(Xan) by the Stone-Weierstrass theorem, see [17, Theorem 7.12].

The next result explains the importance of models with reduced special fiber in

our approach.

Lemma 1.3. Let X be a model of X with reduced special fiber.

(i) If L is a model of L determined on X , then the supnorm ‖ · ‖φL
coincides

with the lattice norm ‖ · ‖H0(X ,L ).

(ii) If D is a vertical Cartier divisor on X , then D is effective if and only if φD ≥ 0.

Proof. Property (i) is [6, Lemma 6.3]. For (ii), note that the vertical Cartier divisor D

induces a canonical meromorphic section sD of L = O(D) which restricts to a global

section of OX = L |X . By definition of a lattice norm, we have sD ∈ H0(X , L ) if and only

if ‖sD‖H0(X ,L ) ≤ 1 and hence (ii) follows from (i). �
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1.5 Plurisubharmonic metrics and envelopes

In this subsection, we recall some facts about plurisubharmonic metrics on an ample

line bundle L over X. We refer to [6, §7] for a thorough discussion.

Assume first that K is non-trivially valued. Following Shou-Wu Zhang [34], we

then say that a continuous metric φ on L is plurisubharmonic (psh for short) if φ can

be written as a uniform limit of model metrics φLi
associated to nef Q-models Li of L.

By [6, Theorem 7.8], this definition is compatible with the point of view of [6, 10], which

defines continuous psh metrics as uniform limits of Fubini–Study metrics.

When K is trivially valued, a continuous metric φ on L is called psh if there exists

a non-trivially valued non-Archimedean field extension F of K such that the induced

continuous metric φF on the base change L⊗K F is psh in the above sense. By [6, Theorem

7.32], this condition is independent of the choice of F, and compatible with the Fubini–

Study approach of [6, 10].

Definition 1.4. We say that continuity of envelopes holds for (X, L) if, for any

continuous metric φ on L, the psh envelope

P(φ) := sup{ψ continuous psh metric on L | ψ ≤ φ}

is a continuous metric on L as well.

When this holds, P(φ) is automatically psh, and is thus characterized as the

greatest continuous psh metric dominated by φ. In the complex analytic case, continuity

of envelopes holds over any normal complex space, and fails in general otherwise. By

analogy, we conjecture that continuity of envelopes holds as soon as X is normal. As

recalled in the introduction, it is at present known when X is smooth and one of the

following is satisfied:

• X is a curve, as a consequence of A. Thuillier’s work [31] (see [21]);

• K discretely or trivially valued, of residue characteristic 0 [8, 10], building

on multiplier ideals and the Nadel vanishing theorem;

• K is discretely valued of characteristic p, (X, L) is defined over a function

field of transcendence degree d, and resolution of singularities is assumed

in dimension d + n [21], replacing multiplier ideals with test ideals.

1.6 Monge–Ampère measures and energy

A construction of A. Chambert-Loir associates to any n-tuple φ1, . . . , φn of continuous

psh metrics on ample line bundles L1, . . . , Ln over X their mixed Monge–Ampère
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measure

ddcφ1 ∧ · · · ∧ ddcφn,

a positive Radon measure on Xan of total mass equal to the intersection number (L1 ·
. . . · Ln). This measure depends multilinearly and continuously on the tuple (φ1, . . . , φn)

with respect to uniform convergence (and weak convergence of measures), and the

construction is further compatible with ground field extension.

These measures were first constructed in [13] over non-Archimedean fields K

with a countable dense subset. Over an arbitrary non-Archimedean ground field, the

measures can be obtained by base change to a non-trivially valued algebraically closed

non-Archimedean field F, using [18, §2]. One can also directly rely on the local approach

in [13], see [6, §8.1] for details.

Example 1.5. For psh model metrics φ1, . . . , φn, the measure ddcφ1 ∧ · · · ∧ ddcφn has

finite support. When K is algebraically closed, the φi are determined by nef Q-models

L1, . . . , Ln of L determined on a model X that can be chosen to have reduced special

fiber Xs; each irreducible component Y of Xs then determines a unique point xY ∈ Xan

with redX (xY) the generic point of Y, and we have

ddcφ1 ∧ · · · ∧ ddcφn =
∑

Y

(L1|Y · · ·Ln|Y)δxY
,

where δxY
is the Dirac measure at xY , see [18, Corollary 2.8] and [12, Théorème 6.9.3].

From now on we fix an ample line bundle L on X, and denote by V := (Ln) its

volume. The relative Monge–Ampère energy of φ, ψ is defined as

E(φ, ψ) := 1

n + 1

n∑
j=0

∫
Xan

(φ − ψ)(ddcφ)j ∧ (ddcψ)n−j. (1.2)

We emphasize that the present normalization is not uniform across the literature. For

each ψ , the functional φ �→ E(φ, ψ) is characterized as the unique antiderivative of the

Monge–Ampère operator φ �→ (ddcφ)n that vanishes at ψ , in the sense that

d

dt

∣∣∣∣
t=0

E((1 − t)φ + tφ′, ψ) =
∫

Xan
(φ′ − φ)(ddcφ)n (1.3)
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for any two continuous psh metrics φ, φ′. As a consequence, the cocycle property

E(φ1, φ2) + E(φ2, φ3) + E(φ3, φ1) = 0

holds for all triples of continuous psh metrics φ1, φ2, φ3 on L.

Another key property of the Monge–Ampère energy is the concavity of

φ �→ E(φ, ψ). In view of (1.3) and the cocyle property, this amounts to

E(φ, ψ) ≤
∫

Xan
(φ − ψ)(ddcψ)n (1.4)

for all continuous psh metrics φ, ψ on L. Moreover,

E(φ + c) = E(φ) + Vc

for all c ∈ R. We refer to [10, §3.8] for details on the above properties.

1.7 Relative volumes of metrics

Recall that the volume of a line bundle L on X is defined as

vol(L) := lim
m→∞

n!

mn dim H0(X, mL) ∈ R≥0.

For geometrically integral projective schemes, the existence of the limit can be shown

by using Okounkov bodies, see for instance [27]. The generalization to geometrically

reduced projective schemes can be found in [6, Theorem 9.8]. We have vol(L) > 0 if and

only if L is big, and vol(L) = (Ln) whenever L is nef.

The relative volume of two continuous metrics φ, ψ on L is

vol(L, φ, ψ) := lim
m→∞

n!

mn+1 vol(‖ · ‖mφ , ‖ · ‖mψ) ∈ R.

The existence of this limit was established is [6, Theorem 9.8], building on the work of

Chen and Maclean [14].

Proposition 1.6. The following properties hold for all continuous metrics on a given

line bundle L:

(i) cocycle formula: vol(L, φ1, φ2) + vol(L, φ2, φ3) + vol(L, φ3, φ1) = 0;
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(ii) monotonicity: φ ≤ φ′ �⇒ vol(L, φ, ψ) ≤ vol(L, φ′, ψ);

(iii) scaling: vol(L, φ + c, ψ) = vol(L, φ, ψ) + vol(L)c for c ∈ R;

(iv) Lipschitz continuity:

∣∣vol(L, φ, ψ) − vol(L, φ′, ψ ′)
∣∣≤vol(L)

(
sup

x∈Xan
|φ(x)−φ′(x)|+ sup

x∈Xan
|ψ(x)−ψ ′(x)|

)
;

(v) homogeneity: vol(aL, aφ, aψ) = an+1vol(L, φ, ψ) for all a ∈ N;

(vi) base change invariance: for any non-Archimedean extension F/K, we have

vol(LF , φF , ψF) = vol(L, φ, ψ),

with φF , ψF denoting the pullbacks of φ, ψ to the base change LF = L ⊗K F.

In particular, if L is not big, that is, vol(L) = 0, then vol(L, φ, ψ) = 0 for all

continuous metrics on L, by (iv). We refer to [6, Propositions 9.11, 9.12] for proofs of the

above properties.

The next result, which equates relative volume and relative energy, goes back

to [3] in the complex analytic case. In the non-Archimedean context, the result was

established in [11] in the discretely valued case, and in [6, Corollary B] in the general

case.

Theorem 1.7. If L is an ample line bundle and φ, ψ are continuous metrics on L with

continuous psh envelopes P(φ), P(ψ), then

vol(L, φ, ψ) = E(P(φ), P(ψ)).

2 An Asymptotic Riemann–Roch Theorem

This section reviews some facts on the determinant of cohomology and Deligne pairings,

following [6, Appendix A], and uses this to prove a Riemann–Roch-type formula for

vertical Cartier divisors on models. We still denote by X a geometrically reduced

projective K-scheme of dimension n.
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2.1 Determinant of cohomology and Deligne pairings

The determinant of cohomology of a line bundle L on X is a line bundle λX(L) over Spec K,

that is, a one-dimensional K-vector space; it can simply be described as

λX(L) :=
n∑

i=0

(−1)i det Hi(X, L),

where we use additive notation for tensor products of line bundles.

Consider now a model (X , L ) of (X, L), with structure morphism π : X →
S := Spec K◦. Kiehl’s theorem on (pseudo)coherence of direct images and the flatness

of π imply that the complex Rπ∗L is perfect. Thus, there exists a bounded complex of

vector bundles E• on S with a quasi-isomorphism E• → Rπ∗L and the determinant of

cohomology of L is defined as

λX (L ) := det E• =
∑

i

(−1)i det E i,

this line bundle on S being unique up to unique isomorphism of Q-line bundles by [24].

This construction commutes with base change, and λX (L ) is thus a Q-model of λX(L),

cf. [6, Appendix A] for more details.

By flatness of π , the OS-module π∗L is torsion-free, and hence locally free.

When Riπ∗L is locally free for all i, [24, p.43] yields

λX (L ) =
n∑

i=0

(−1)i det Riπ∗L . (2.1)

Combining this with Serre vanishing (see [6, Corollary A.12] for the relevant statement),

we infer:

Lemma 2.1. If L is ample and E is any line bundle on X , then λX (mL + E) coincides

with the determinant of the vector bundle π∗(mL + E) for all m � 1.

The fundamental property of the determinant of cohomology, which is extracted

in [6, Appendix A] from a paper of François Ducrot [15], is that λX admits a canonical
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structure of a polynomial functor of degree n + 1. By definition, this means that the

(n + 1)-st iterated difference

〈L0, . . . , Ln〉X :=
∑

I⊂{0,...,n}
(−1)n+1−|I|λX (

∑
i∈I

Li) (2.2)

has a structure of multilinear functor, compatible with its natural symmetry structure

and with base change, and called the Deligne pairing. As a consequence, we get for each

line bundle L on a model X and m ∈ Z a polynomial expansion of Q-line bundles

λX (mL ) = mn+1

(n + 1)!
〈Ln+1〉X + . . . , (2.3)

called the Knudsen–Mumford expansion. Here and thereafter, we use the shorthand

notation

〈Ln+1〉X := 〈L, . . . ,L︸ ︷︷ ︸
n+1-times

〉X .

Lemma 2.2. Let L0 be a be a line bundle on a model X of X. The polynomial structure

of degree n + 1 on λX induces a polynomial structure of degree n on

L �→ λX (L + L0) − λX (L ),

whose n-th iterated difference further identifies with

(L1, . . . , Ln) �→ 〈L0, L1, . . . , Ln〉X .

Proof. By definition, the n-th iterated difference of L �→ λX (L + L0) − λX (L ) is

equal to

∑
J⊂{1,...,n}

(−1)n−|J|
⎛
⎝λX (L0 +

∑
j∈J

Lj) − λX (
∑
j∈J

Lj)

⎞
⎠

=
∑

I⊂{0,...,n}, 0∈I

(−1)n+1−|I|λX (
∑
i∈I

Li) +
∑

I⊂{0,...,n}, 0/∈I

(−1)n+1−|I|λX (
∑
i∈I

Li)

= 〈L0, L1, . . . , Ln〉X ,
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by (2.2). This finishes the proof, since the latter is a multilinear functor of (L1, . . . , Ln).

�

We finally recall the following special case of [6, Theorem 8.18]. We use the

terminology for model functions and model metrics introduced in §1.4.

Lemma 2.3. If D is a vertical divisor on a model X of X with associated model function

φD and L1, . . . , Ln are nef line bundles on X , then

φ〈OX (D),L1,...,Ln〉X =
∫

Xan
φD ddcφL1

∧ · · · ∧ ddcφLn
,

where we identify the model function φ〈OX (D),L1,...,Ln〉X on Spec(K) with its unique

value.

2.2 An asymptotic Riemann–Roch theorem

Pick a model of X, a line bundle L on X , and an effective vertical Cartier divisor D

on X . By the coherence in Kiehl’s direct image theorem, the K◦-module H0(D, L |D)

is finitely presented and torsion (see [6, Corollary A.12]). We denote by h0(D, L |D) its

content, as defined in §1.1.

Theorem 2.4. Let X be a model of X, L an ample line bundle on X , and D an effective

vertical Cartier divisor on X . Then

h0(D, mL |D) = mn

n!

∫
Xan

φD(ddcφL )n + O(mn−1).

Proof. By Serre vanishing [6, Theorem A.6]), we have Hq(X , mL ) = Hq(X , mL −D) = 0

for all q ≥ 1 and m � 1. Restriction to D thus yields an exact sequence

0 → H0(X , mL − D) → H0(X , mL ) → H0(D, mL |D) → 0,

which implies

h0(D, mL |D) = φdet H0(X ,mL ) − φdet H0(X ,mL −D),
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by (1.1). By Lemma 2.1, we further have

det H0(X , mL ) = λX (mL ), det H0(X , mL − D) = λX (mL − D)

and hence

h0(D, mL |D) = φλX (mL )−λX (mL −D).

Now Lemma 2.2 provides a polynomial expansion

λX (mL ) − λX (mL − D) = mn

n!
〈OX (D), L n〉X + ...,

and hence

h0(D, mL |D) = mn

n!
φ〈OX (D),L n〉X + O(mn−1)

= mn

n!

∫
Xan

φD(ddcφL )n + O(mn−1),

by Lemma 2.3. �

3 Differentiability and Orthogonality

In this section, we prove our main result on differentiability of relative volumes, which

generalizes [11, Theorem B] from discretely valued non-Archimedean fields to arbitrary

ones. In what follows, X is a projective, geometrically reduced scheme of dimension n

over an arbitrary non-Archimedean field K, and L is an ample line bundle on X.

3.1 Proof of Theorem A

The following result corresponds to Theorem A in the introduction.

Theorem 3.1. For any continuous psh metric φ on L and continuous function f on Xan,

we have

d

dt

∣∣∣∣
t=0

vol(L, φ + tf , φ) =
∫

Xan
f (ddcφ)n.

The key ingredient in the proof is the following general estimate, which can be

viewed as a local analogue of the Siu-type inequality proved in [33]. Note that Yuan’s
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argument was inspired by the proof of Siu’s inequalities in algebraic geometry as given

in [26, Theorem 2.2.15], see also [26, p. 183] for a historical account of Siu’s inequality.

Lemma 3.2. Let φ be a continuous psh metric on L, ψ1, ψ2 be continuous psh metrics

on an auxiliary ample line bundle M, and set f := ψ1 −ψ2 and C := ((L + M)n)− (Ln) > 0.

Then

C inf
x∈Xan

f (x) ≤
∫

Xan
f (ddcφ + ddcψ1)n − vol(L, φ + f , φ) ≤ C sup

x∈Xan
f (x). (3.1)

Proof. In the proof, we assume that the reader is familiar with the properties of

Monge–Ampère measures and relative volumes given in §1.6 and in §1.7. First, we give

a few reduction steps.

By the invariance of relative volumes under ground field extension, we can

pass to a non-Archimedean extension and assume that K is algebraically closed and

non-trivially valued (as we did at the beginning of §1.6 for Monge–Ampère measures).

Every continuous psh metric on an ample line bundle is then a uniform limit of

metrics induced by nef Q-models of L. By continuity of Monge–Ampère measures

and relative volumes with respect to uniform convergence, we may thus assume that

there exist nef Q-models L and Mi of L and M, determined on a model X of X,

such that φ = φL and ψi = φMi
. Since K is algebraically closed, we can further

assume after passing to a higher model that X has reduced special fiber, and that

L and M admit ample Q-models L ′, M ′ on X , by Lemma 1.1. Replacing L and

Mi with (1 − ε)L + εL ′ and (1 − ε)Mi + εM ′, 0 < ε � 1, we are thus reduced to

the case where L and the Mi themselves are ample Q-line bundles, using again the

continuity of Monge–Ampère measures and relative volumes with respect to uniform

convergence. Replacing L and M with large enough multiples and using the homogeneity

property of relative volumes, we can finally assume that L and the Mi are honest

ample line bundles on X such that each admits a relatively regular section, using

[6, Proposition A.15].

Observe that adding to f a constant a ∈ R translates the quantity

∫
Xan

f (ddcφ + ddcψ1)n − vol(L, φ + f , φ)

by aC. In order to prove the left-hand inequality in (3.1), we may thus replace f with

f − infXan f and assume infXan f = 0. The unique vertical Cartier divisor E on X such
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that M1 − M2 = O(E) satisfies φE = f ≥ 0, and E is thus effective by Lemma 1.3, since

X has reduced special fiber. Pick integers 1 ≤ j ≤ m. The restriction exact sequence

0 → H0 (X , mL + (j − 1)E) → H0 (X , mL + jE)) → H0 (
E, (mL + jE)|E

)

yields

vol
(
‖ · ‖mφ+jf , ‖ · ‖mφ+(j−1)f

)
= vol

(
‖ · ‖H0(X ,mL +jE), ‖ · ‖H0(X ,mL +(j−1)E)

)
≤ h0 (

E, (mL + jE)|E
)

,

where the 1st equality follows from Lemma 1.3 and the inequality follows from (1.1).

Summing up over j and using the cocycle property of relative volumes, we infer

vol
(
‖ · ‖m(φ+f ), ‖ · ‖mφ

)
≤

m∑
j=1

h0 (
E, (mL + jE)|E

)
.

Since M1 and M2 admit relatively regular sections, their restrictions to E admit regular

sections as well, by Lemma 1.2. For j = 1, . . . , m we thus have

h0 (
E, (mL + jE)|E

) = h0 (
E, (mL + jM1 − jM2)|E

) ≤ h0 (
E, m(L + M1)|E

)
,

and hence

vol
(‖ · ‖m(φ+f ), ‖ · ‖mφ

) ≤ m h0 (
E, m(L + M1)|E

)
.

As a result,

vol (L, φ + f , φ) = lim
m→∞

n!

mn+1 vol
(
‖ · ‖m(φ+f ), ‖ · ‖mφ

)
≤ lim

m→∞
n!

mn h0 (
E, m(L + M1)|E

) =
∫

Xan
f (ddcφ + ddcψ1)n,

where the last equality follows from Theorem 2.4. This concludes the proof of the left-

hand inequality in (3.1).

The proof of the right-hand inequality is very similar. In that case, we may

replace f with f − supXan f and assume supXan f = 0. As a result, the vertical Cartier
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divisor D with O(D) = M2 − M1 is effective, using φD = −f ≥ 0. The restriction exact

sequence

0 → H0 (X , mL − (j + 1)D) → H0 (X , mL − jD) → H0 (
D, (mL − jD)|D

)
then shows that

vol
(
‖ · ‖mφ , ‖ · ‖m(φ+f )

)
≤

m−1∑
j=0

h0 (
D, (mL − jD)|D

) ≤ m h0 (
D, m(L + M1)|D

)
,

which yields

−vol (L, φ + f , φ) = vol (L, φ, φ + f )

≤
∫

Xan
φD

(
ddc(φ + ψ1)

)n = −
∫

Xan
f

(
ddc(φ + ψ1)

)n

proving the right-hand inequality and hence the claim. �

Proof of Theorem 3.1. Let φ be a continuous psh metric on L and f be a continuous

function on Xan. Assume first that there exist continuous psh metrics ψ1, ψ2 on an ample

line bundle M such that f = ψ1 − ψ2. Pick m ∈ Z>0, t ∈ (0, m−1], and observe that

mtf = ψ1 − ψ2,t where

ψ2,t := ψ1 − mtf = (1 − mt)ψ1 + mtψ2

is a continuous psh metric on M, as a convex combination of such metrics. By Lemma

3.2, we thus have

tmCm inf
x∈Xan

f (x)≤tm
∫

Xan
f (mddcφ + ddcψ1)n−vol(mL, mφ + mtf , mφ)≤ tmCm sup

x∈Xan
f (x)

with

Cm := ((mL + M)n) − ((mL)n).

By homogeneity of relative volumes, vol(mL, mφ +mtf , mφ) = mn+1vol(L, φ + tf , φ), thus

m−nCm inf
x∈Xan

f (x) ≤
∫

Xan
f (ddcφ + m−1ddcψ1)n − t−1vol(L, φ + tf , φ) ≤ m−nCm sup

x∈Xan
f (x),
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and hence

∫
Xan

f (ddcφ + m−1ddcψ1)n − m−nCm sup
x∈Xan

f (x) ≤ lim inf
t→0+

t−1vol(L, φ + tf , φ)

≤ lim sup
t→0+

t−1vol(L, φ + tf , φ) ≤
∫

Xan
f (ddcφ + m−1ddcψ1)n − m−nCm inf

x∈Xan
f (x).

Now m−nCm → 0 as m → ∞, and we conclude as desired

lim
t→0+

t−1vol(L, φ + tf , φ) =
∫

Xan
f (ddcφ)n.

Let now f be an arbitrary continuous function on Xan. By density of model functions in

C0(Xan), we can pick a sequence (fi)i∈N of model functions on Xan such that

εi := sup
x∈Xan

|f (x) − fi(x)| → 0.

Pick any ample line bundle M on X. Since M admits ample Q-models on arbitrarily

high models [22, Proposition 4.11, Lemma 4.12], each model function fi can be written

as fi = ψi1 − ψi2 where ψi1, ψi2 are model metrics on aiM for some non-zero ai ∈ N,

determined by ample Q-models Mi1, Mi2 of aiM.

Since fi − εi ≤ f ≤ fi + εi, the monotonicity of relative volumes yields for each

t > 0

vol(L, φ + tfi, φ) − tVεi ≤ vol(L, φ + tf , φ) ≤ vol(L, φ + tfi, φ) + tVεi

with V := (Ln). By the first part of the proof, we infer

∫
Xan

fi (ddcφ)n − Vεi ≤ lim inf
t→0+

t−1vol(L, φ + tf , φ)

≤ lim sup
t→0+

t−1vol(L, φ + tf , φ) ≤
∫

Xan
fi (ddcφ)n + Vεi,

and letting i → ∞ yields as desired

lim
t→0+

t−1vol(L, φ + tf , φ) =
∫

Xan
f (ddcφ)n.

Replacing f by −f , we conclude that the above holds also for t negative, and Theorem 3.1

follows. �
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3.2 Differentiability and orthogonality

In this subsection, we assume that continuity of envelopes holds for (X, L). The psh

envelope P(φ) of a continuous metric φ on L is thus the greatest continuous psh metric

on L such that P(φ) ≤ φ, see §1.5. Note that φ �→ P(φ) is monotone increasing, and

satisfies P(φ + c) = P(φ) + c for c ∈ R, two properties that formally imply

|P(φ) − P(ψ)| ≤ sup
x∈Xan

|φ(x) − ψ(x)| (3.2)

for all continuous metrics φ, ψ on L.

To ease notation, we fix in what follows a reference continuous psh metric φ0 on

L, and denote by

E(φ) := E(φ, φ0)

the relative energy of a continuous psh metric φ on L with respect to φ0. By Theorem 1.7,

we have

E(P(φ)) = vol(L, φ, φ0) (3.3)

for all continuous metrics φ on L.

Definition 3.3. Given a continuous metric φ on L, we say that

• E ◦ P is differentiable at φ if

d

dt

∣∣∣∣
t=0

E(P(φ + tf )) =
∫

Xan
f (ddcP(φ))n, (3.4)

for all f ∈ C0(Xan) ;

• orthogonality holds for φ if the Monge–Ampère measure (ddcP(φ))n is

supported in the contact locus {P(φ) = φ}, that is,

∫
Xan

(φ − P(φ)) (ddcP(φ))n = 0. (3.5)

Theorem 3.4. Assume that continuity of envelopes holds for (X, L). Then E ◦ P is

differentiable at each continuous metric φ on L, and orthogonality holds for φ.
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Lemma 3.5. The following properties are equivalent:

(i) E ◦ P is differentiable at all continuous metrics on L;

(ii) E ◦ P is differentiable at all continuous psh metrics on L;

(iii) orthogonality holds for all continuous metrics on L.

Proof. (i)�⇒(ii) is trivial. We reproduce the simple argument for (ii)�⇒(iii) given in [11,

Theorem 6.3.2]. Pick a continuous metric φ, and set ψ := P(φ) and f := φ − ψ . For each

t ∈ [0, 1], ψ + tf = (1 − t)P(φ)+ tφ satisfies P(φ) ≤ ψ + tf ≤ φ, and hence P(φ) = P(ψ + tf ).

Differentiability of E ◦ P at ψ thus yields

0 = d

dt

∣∣∣∣
t=0

E(P(ψ + tf )) =
∫

Xan
f (ddcP(φ))n =

∫
(φ − P(φ))(ddcP(φ))n,

which proves that φ satisfies the orthogonality property. Finally, the following simple

argument for (iii)�⇒(i) is similar to the proof of [28, Lemma 6.13]. Pick a continuous

metric φ and a continuous function f . By concavity of E (see (1.4)), we have

∫
Xan

(P(φ + tf ) − P(φ)) (ddcP(φ + tf ))n ≤ E(P(φ + tf )) − E(P(φ))

≤
∫

Xan
(P(φ + tf ) − P(φ)) (ddcP(φ))n.

Using the orthogonality property at φ + tf and φ together with P(φ) ≤ φ and P(φ + tf ) ≤
φ + tf , this yields for t > 0

∫
Xan

f (ddcP(φ + tf ))n ≤ E(P(φ + tf )) − E(P(φ))

t
≤

∫
Xan

f (ddcP(φ))n,

and hence

lim
t→0+

E(P(φ + tf )) − E(P(φ))

t
=

∫
Xan

f (ddcP(φ))n,

by uniform convergence of P(φ + tf ) to P(φ), cf. (3.2). Replacing f by −f proves (iii)�⇒(i).

�

Proof of Theorem 3.4. Taking into account (3.3), Theorem 3.1 precisely says that E◦P

is differentiable at every continuous psh metric on L, and Theorem 3.4 thus follows

from Lemma 3.5. �
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3.3 An application to Monge–Ampère equations

In this subsection we still assume that continuity of envelopes holds for (X, L). As in

[10], we define a (possibly singular) psh metric on L as a decreasing limit of continuous

psh metrics, not identically −∞ on any component of X. A subset E ⊂ Xan is pluripolar

if there exists a psh metric φ with φ ≡ −∞ on E, this condition being easily seen to

be independent of the choice of ample line bundle L. If E is nonpluripolar, one proves

exactly as in [9, Proposition 5.2(ii)] that for each continuous metric φ on L there exists a

constant C > 0 such that

sup
x∈Xan

(ψ(x) − φ(x)) ≤ sup
x∈E

(ψ(x) − φ(x)) + C (3.6)

for all psh metrics ψ on L. Given a nonpluripolar compact E ⊂ Xan and a continuous

metric φ on L, we can thus define the equilibrium metric of the pair (E, φ) as

P(E, φ) := sup{ψ psh metric on L | ψ ≤ φ on E}.

Since every psh metric ψ on L is a decreasing limit of continuous psh metrics, Dini’s

lemma easily yields

P(E, φ) = sup{ψ continuous psh metric on L | ψ ≤ φ on E},

(see [6, Proposition 7.26]) which is thus lsc. By (3.6), the family of metrics ψ in the

definition of P(E, φ) is uniformly bounded from above, the usc regularization P(E, φ)�

is thus psh, since we assume continuity of envelopes (see [6, Lemma 7.30]). As a result,

P(E, φ)� ≤ φ holds on E if and only if P(E, φ) = P(E, φ)� is continuous. Following classical

terminology in pluripotential theory, we then say that (E, φ) is L-regular.

For a nonpluripolar point x ∈ Xan, L-regularity of ({x}, φ) is independent of the

continuous metric φ, as the latter only appears through its value at x, and we then

simply say that x is L-regular.

Example 3.6. By [10, Lemma 2.20, Theorem 2.21], every quasimonomial point of Xan is

nonpluripolar.

Conjecturally, every nonpluripolar point should be L-regular; this has been

shown in [9, Theorem 5.13] when X is smooth, K has residue characteristic 0, and is

trivially or discretely valued.
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Relying on the variational argument developed in [5, 7], we prove the following

result, which corresponds to Corollary C in the introduction.

Theorem 3.7. Assume that continuity of envelopes holds for (X, L). Let x ∈ Xan be a

nonpluripolar point, φ a continuous metric on L, and assume that x is L-regular, so that

φx := P({x}, φ) = sup{ψ psh metric on L | ψ(x) ≤ φ(x)}

is continuous and psh. Then V−1(ddcφx)n = δx with V := (Ln).

Proof. Pick f ∈ C0(Xan). Since P(φx + f ) − f (x) is a continuous psh metric on L and

satisfies

P(φx + f )(x) − f (x) ≤ φx(x) = φ(x),

we have P(φx + f )− f (x) ≤ φx by definition of the latter, and hence E(P(φx + f ))− Vf (x) ≤
E(φx). Applying this to tf , t > 0, we infer

t−1 (
E(P(φx + tf )) − E(φx)

) ≤ Vf (x),

and Theorem 3.4 thus yields

∫
Xan

f (ddcφx)n ≤ Vf (x).

Replacing f with −f concludes the proof. �
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