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1 Introduction

1.1 Arithmetic intersection theory plays the same important role in arithmetic geometry as the
intersection theory in algebraic geometry. It was introduced in higher dimensions by Gillet-Soulé
[GS]. This work is still the main reference for the basic theorems and proofs. The goal of the
present article is to fill up a gap in the proof of compatibility of arithmetic intersection product
and arithmetic rational equivalence. In the introduction, we explain first the construction of
Gillet-Soulé and the gap, then we outline the article.

1.2 Let X be an irreducible smooth quasiprojective variety over a number field K and let X
be a regular model of X of finite type, separated and flat over the ring of integers OK . More
generally, we could work over an arithmetic ring as in [GS]. An arithmetic cycle on X is a
pair (Z , gZ) where Z is a cycle on X with generic fibre Z and gZ is a Green’s current for
Z (cf. 4.2 for details). The Green’s currents are only considered up to im(d) + im(dc). For a
closed irreducible subvariety W of X and a non-zero rational function fW on W , we have an
arithmetic cycle

d̂iv(fW ) = (div(fW ), log |fW |−2)

on X . The arithmetic Chow group ĈH(X ) is the quotient of the group of arithmetic cycles

with respect to the subgroup generated by d̂iv(fW ) where fW and W are ranging over all
possible choices. A K1-chain on X is a finite formal sum f =

∑
W fW and hence the subgroup

above is the set of all d̂iv(f).

1.3 If (Y , gY ) and (Z , gZ) are arithmetic cycles on X such that the generic fibres Y and Z
intersect properly on X, then a proper intersection product

(Y , gY ).(Z , gZ) = (Y .Z , gY ∗ gZ)

is explained in [GS]. The product of cycles Y .Z is well-defined as a cycle up to vertical
rational equivalence and by introducing Q-coefficients (cf. 4.9). The ∗-product gY ∗ gZ is a

Green’s current for Y.Z (cf. 4.2). To get a ring structure on ĈH(X )⊗Q, one has to solve the
following problem (cf. [GS], proof of theorem 4.2.3 on p. 144):

1.4 Let f be a K1-chain on X such that the generic fibre of div(f) and Z intersect properly on
X. Then one has to construct a K1-chain f .Z (simply notation) on X such that

d̂iv(f .Z) = d̂iv(f).(Z , gZ)

up to vertical rational equivalence and up to im(d)+im(dc). The gap occurs in the construction
of f .Z which we explain next.

1.5 One can show that it is enough to construct f .Z on the generic fibre X (cf. 4.9)), so we may
ignore the model X over OK . In [GS] on p. 140, a K1-chain f =

∑
W fW is said to intersect

the cycle Z properly on X if for all W with fW 6= 1, we have

1
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(a) W intersects Z properly on X;

(b) div(fW ) intersects Z properly on X.

For the definition of a K1-chain, we refer to definition 2.2. If we require only (b), then we say
that f intersects Z almost properly. To reduce the construction of f .Z to the case of a single
fW , one uses the following result.

1.6 Moving Lemma for K1-chains ([GS], p. 142). Let f be a K1-chain on X such that
div(f) intersects Z properly on X. Then there is a K1-chain g on X such that g is equal to f
up to boundaries of K2-chains (cf. 4.4) and such that g intersects Z almost properly.

1.7 Since the boundaries do not change the problem 1.4 in an essential way, the remark in
1.5 and the moving lemma for K1-chains lead to the following reduction of 1.4: Let fW be a
non-zero rational function on the irreducible closed subvariety W of X and let Z be a cycle on
X such that div(fW ) and Z intersect properly. Then one has to construct a K1-chain fW .Z on
X such that

div(fW .Z) = div(fW ).Z

on X and such that
log |fW .Z| = log |fW | ∧ δZ

up to im(d) + im(dc). In 1.8, the case of proper intersection is handled under an additional
assumption. The general case of proper intersection is explained in 1.9 and example 1.10 shows
where the gap occurs.

1.8 Suppose that fW intersects Z properly on X. Let f̃W be an extension of fW to a rational
function on X. Additionally, we assume that div(f̃W ) intersects W.Z properly. Then we have

div(fW ).Z = (div(f̃W ).W ).Z = div(f̃W ).(W.Z)

and
log |fW |−2 ∗ gZ = (log |f̃W |−2 ∗ gW ) ∗ gZ = log |f̃W |−2 ∧ δW.Z

as an identity of Green’s currents holding up to im(d) + im(dc). In this case, it is clear that
fW .Z is the restriction of fW to W.Z.

1.9 If fW intersects Z properly, then fW .Z is defined as the restriction of fW to W.Z ([GS], p.
140). But without the additional hypothesis of 1.8, fW is not necessarily a unit in the generic
points of the components of W.Z. This will be shown in the following example. Hence the
restriction doesn’t make sense.

1.10 Example. Let X = P2
K with affine coordinates x, y and let Z be the hyperplane x = 0.

On the singular cubic W given by the affine equation y2 = x2(x+1), we consider the restriction

fW of f̃W (x, y) = y−x
y+x

. Note that W ∩ Z is the node P0 = (0, 0) of W and the point at infinity

of W . Moreover, div(fW ) is the zero-divisor and hence intersects Z properly. But fW is not a
unit at P0.

1.11 In the case of almost proper intersection, the construction of fW .Z ([GS], p. 141) uses 1.9
in the proper components of intersection of W by Z. In the union T of non proper components
of intersection, one restricts fW to a representative of the intersection product W.Z. It is used
there that fW |T is a unit which is also unclear.

1.12 Pointing out the gap from 1.9 to Gillet-Soulé, they proposed in a letter to the author to
replace the Weil divisor div(fW ) in the definition of (almost) proper intersection by a suitable
larger set D(fW ). The idea is to consider fW as a function on the normalization W ′ of W ,
taking there the support of the divisor and defining its image in W as D(fW ). In example 1.10,
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D(fW ) contains also P0. If fW intersects Z properly, then one can define fW .Z by working
on W ′ where restriction is well-defined and then using projection formula. Hence we need a
stronger moving lemma for K1-chains for the new definition of almost proper intersection and
we have to handle the case of almost proper intersection. The goal of this article is to supply
the necessary details.

1.13 Here is a summary of the present article. The definition of a K1-chain and its basic
properties are given in the second section. The new moving lemma for K1-chains is proved in
the third section. The proof still follows the lines of Roberts’ proof of Chow’s moving lemma (cf.
[Ro]). The idea is to write the K1-chain f as a sum of cones over K1-chains in projective space
intersected with X and with a remaining summand which intersects Z properly (cf. (8) in the
proof of lemma 3.3). This construction is based on the excess-lemma 3.2. Now we perform a
P1-deformation of the cones in projective space to get a K1-chain on X intersecting Z properly
(cf. (9) in the proof of lemma 3.3). In the fourth section, we first summarize basic facts from
the ∗-product of Green’s currents. In the case of proper intersection, lemma 4.3 (resp. lemma
4.10) shows that fW .Z is what we want in the analytic (resp. geometric) setting. To omit the
problem mentioned in 1.11, the new moving lemma for K1-chains does not use the notion of
almost proper intersection but is directly stated on X×P1. To get the version 1.6 with the new
definition of almost proper intersection, one can just use the K1-chain g from 4.6. Applying the
moving lemma for K1-chains, we give the solution of problem 1.4 first in the analytic setting
(proposition 4.7) and then refined intersection theory gives also the geometric side (4.9).
As the result of this paper is basic for arithmetic intersection theory, the proofs are kept
elementary and are quite detailed. The use of higher algebraic K-theory is kept to a minimum,
but a good understanding of intersection theory on the level of the first half of [Fu] is assumed.

I would like to thank C. Soulé for his precious hints and for his suggestion to publish this paper.
Many thanks for J. Kramer for his interest, constant encouragement and his comments. I also
benfitted from discussions with J. Burgos, G. Hein and U. Kühn.
Finally, I would like to thank the research network TMR, in particular J. Leiterer, and the Swiss
Bundesamt für Bildung und Wissenschaft for financial support and the Humboldt-Universität
Berlin for its hospitality.

2 K1-chains

2.1 Let X be a variety over a field K, i.e. a reduced scheme of finite type over K. For an
irreducible closed subvariety W , we denote by K(W ) the field of rational functions on W .

2.2 Definition. A K1-chain on X is an element

f =
∑
W

fW ∈
⊕
W

K(W )∗

where W ranges over all irreducible closed subvarieties of X.

2.3 Clearly, the K1-chains form a group. For an irreducible closed subvariety W of X, let
πW : W ′ → W be the normalization of W . Then W ′ is an irreducible normal variety over K
and πW is a finite surjective morphism which is birational. For fW ∈ K(W )∗, let f ′W := fW ◦πW .

2.4 Definition. If f is a non-zero rational function on an irreducible normal variety, then
D(f) denotes the support of the Weil divisor of f . For any K1-chain f =

∑
fW , let

D(f) :=
⋃
W

πW (D(f ′W )).
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2.5 Definition. Let Z be a cycle on X and let f =
∑
fW be a K1-chain on X. Then we say

that f intersects Z properly if for any irreducible closed subvariety W with fW 6= 1, W and
D(fW ) both intersect Z properly.

2.6 Let ϕ : X → Y be a proper morphism of varieties over K and let f =
∑
fV be a K1-chain

on X. We are going to define the push-forward of f as a K1-chain of Y . For any irreducible
closed subvariety V of X with W := ϕ(V ), there is a rational function ϕ∗(fV ) on W given as
follows. If the field extension K(V )/K(W ) is finite, then ϕ∗(fV ) is the norm NK(V )/K(W )(fV ),
otherwise ϕ∗(fV ) := 1. Finally, the push-forward of f is given by

ϕ∗(f) :=
∑
V

ϕ∗(fV ).

2.7 Lemma. Let ϕ : X → Y be a proper morphism of varieties over K and let f =
∑
fV be a

K1-chain on X. Then we have
D(ϕ∗(f)) ⊂ ϕ(D(f)).

Proof: First, we may reduce to a single fV . Then we may assume that V maps finitely onto
W . By the universal property of normalizations, there is a unique morphism ϕ′ : V ′ → W ′ over
ϕ. Since ϕ′ is proper, we have

ϕ′∗(div(f ′V )) = div(ϕ′∗(f
′
V ))

proving easily the claim. �

2.8 Now let X be a closed subvariety of PnK and let L be a linear subspace of PnK disjoint from
X. For any irreducible closed subvariety W of X, we consider the projecting cone CL(W ) over
W with vertex L. Geometrically, it is the union of lines joining L and W . Another way to
define it, is to use the linear projection pL : PnK − L → L′ where L′ is any linear subspace of
PnK disjoint from L with dim(L) + dim(L′) = n− 1. Then CL(W ) is the closure of p−1

L (pL(W ))
in PnK . The projecting cone CL(W ) is an irreducible closed subvariety of dimension equal to
dim(W ) + dim(L) + 1.

2.9 Under the same hypothesis as in 2.8, let f =
∑
fW be a K1-chain on X. Then we define a

rational function on CL(W ) by

CL(fW ) := ((pL)∗(fW )) ◦ pL.

By additivity, we extend this to define the projecting cone CL(f) of f with vertex L as a
K1-chain on PnK . Clearly, this construction does not depend on the choice of L′.

2.10 Lemma. Under the hypothesis as in 2.8, we have D(CL(f)) ⊂ CL(D(f)).

Proof: We reduce to the case of a single fW . By lemma 2.7, we have

D((pL)∗(fW )) ⊂ pL(D(fW )).

On the other hand, the definition of CL(fW ) and the universal property of normalizations lead
to

D(CL(fW ))− L ⊂ (pL)−1(D((pL)∗(fW ))).

This proves D(CL(fW )) − L ⊂ CL(D(fW )) and by dimensionality reasons, we get the claim.
�

2.11 Let X be a smooth variety over K. We consider a K1-chain f =
∑
fW and a cycle

Z on X intersecting properly. The goal is to define a product f .Z as a K1-chain on X. By
bilinearity, we may assume that f = fW for a single irreducible closed subvariety W of X and
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that Z is prime. Since the normalization πW : W ′ → X is a finite morphism into a smooth
variety and since Z intersects W properly, the pull back (πW )∗(Z) is well-defined as a cycle on
the normalization W ′ (cf. [Fu], chapter 8). Now the assumption that D(fW ) and Z intersect
properly implies that div(f ′W ) intersects (πW )∗(Z) properly. Using normality, we see that the
restriction of f ′W to every component V of (πW )∗(Z) is a well-defined rational function on V .
Using linearity in the components of (πW )∗(Z), we define f ′W .(πW )∗(Z) as the restriction of f ′W
to (πW )∗(Z). This leads to the K1-chain

fW .Z := (πW )∗(f
′
W .π

∗
W (Z))

on X.

2.12 Let f =
∑
fW be a K1-chain on X. Then div(f) is the cycle on X given by the sum of

the Weil divisors of all the fW ’s, viewed as cycles on X. If X is smooth and Z is a cycle on X
intersecting f properly, then we can easily prove div(f).Z = div(f .Z).

2.13 Lemma. Let f =
∑
fW be a K1-chain intersecting the cycle Z properly on the smooth

variety X over K. Then we have D(f .Z) ⊂ D(f) ∩ supp(Z).

Proof: We may reduce to the case of a single fW and a prime cycle Z. It is easy to see that

D(f ′W .π
∗
W (Z)) ⊂ D(f ′W ) ∩ π−1

W (Z)

and applying πW , we get the claim. �

2.14 Lemma. Let W and Z be irreducible closed subvarieties of the smooth variety X over
K. Let fW be a non-zero rational function on W intersecting Z properly. If V is an irreducible
component of W ∩ Z and if fW restricts to a well-defined rational function on V , then for the
V -component of fW .Z and for the multiplicity mV of W.Z in V , we have

(fW .Z)V = (fW |V )mV .

Proof: Let V ′ be a component of π∗W (Z) with multiplicity mV ′ lying over V . Note that

(πW )∗(f
′
W |V ′) = (fW |V )[K(V ′):K(V )]

and hence
(fW .Z)V = (fW |V )

P
V ′ mV ′ [K(V ′):K(V )].

By projection formula, we have
W.Z = (πW )∗(π

∗
W (Z))

proving

mV =
∑
V ′

mV ′ [K(V ′) : K(V )].

�

2.15 Lemma. Let Y and X be smooth varieties over K and let i : Y → X be a closed
embedding. Suppose that Z is a prime cycle on X intersecting Y properly on X. Let f be a
K1-chain on Y intersecting Y ∩ supp(Z) properly on Y . Then i∗(f) intersects Z properly on X
and we have the projection formula

i∗(f).Z = i∗(f .i
∗(Z)).

The proof is trivial since we use on both sides the same normalizations.

2.16 Lemma. Let ϕ : X → Y be a morphism of irreducible normal varieties over K and
let Z be a prime cycle on X. Let f be a non-zero rational function on Y such that ϕ(Z) is
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not contained in the support of div(f). We assume that the restriction of ϕ to Z is a proper
morphism Z → Y . Then we have

ϕ∗((f ◦ ϕ).Z) = f.ϕ∗(Z).

Here, the products are defined by restriction. The claim even holds for arbitrary varieties as
long as the restrictions are well-defined.

Proof: In fact, the claim is a trivial consequence of

NK(Z)/K(ϕ(Z))(f ◦ ϕ) = f [K(Z):K(ϕ(Z))].

�
Let ϕ : X → Y be a flat morphism of smooth varieties. For a non-zero rational function fW
on an irreducible closed subvariety W of Y , we define ϕ∗(fW ) to be the K1-chain on X given
as the restriction of fW ◦ ϕ to the cycle ϕ∗(W ).

2.17 Lemma. Suppose that Z is a cycle on X intersecting both ϕ−1(W ) and ϕ−1(D(fW ))
properly. We assume that the restriction of ϕ to the support of Z is proper. Then fW intersects
ϕ∗(Z) properly and we have the projection formula

ϕ∗(ϕ
∗(fW ).Z) = fW .ϕ∗(Z).

Proof: Clearly, ϕ∗(fW ) intersects Z properly. To see that fW intersects ϕ∗(Z) properly, we
may assume that Z is prime. Note that

codim(W,Y ) ≥ codim(ϕ(Z) ∩W,ϕ(Z))

≥ codim(Z ∩ ϕ−1(W ), Z)

= codim(ϕ−1(W ), X)

= codim(W,Y )

where we have used flatness in the last step. Hence we have equality everywhere. Similarly, we
argue for D(fW ) instead of W proving that fW intersects ϕ∗(Z) properly. Let V := ϕ−1(W ).
By the universal property of normalization, we have a morphism ϕ′ : V ′ → W ′ such that the
diagram

V ′ ϕ′ //

πV

��

W ′

πW

��
X

ϕ // Y

is commutative. From lemma 2.16, we get

ϕ∗(ϕ
∗(fW ).Z) = (πW )∗(f

′
W |ϕ′∗(π∗V (Z))).

Note that there is a birational morphism V ′ → X ×Y W
′. Using projection formula and the

fibre square rule, we get
ϕ′∗(π

∗
V (Z)) = π∗W (ϕ∗(Z))

proving our projection formula. �

2.18 Lemma. Let ϕ : X → Y be a finite surjective morphism of irreducible normal varieties
over K and let D be an effective Cartier divisor of Y . Let f be a non-zero rational function on
X whose divisor does not contain any component of ϕ∗(D). Then div(ϕ∗(f)) does not contain
any component of D and we have

ϕ∗(f.ϕ
∗(D)) = ϕ∗(f).D.
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Note that in the case of Cartier divisors, the product with a K1-chain is well-defined even if
the variety is not smooth(using [Fu], chapter 2).

Proof: Obviously, ϕ(div(f)) does not contain any component of D and hence both sides of
the projection formula are well-defined. Note that the claim is local in D, so we may assume
that the support Z of D is irreducible. Let ζ be the generic point of Z. Then we have to show
that both sides of the projection formula have the same Z-component. Since OY,ζ is a discrete
valuation ring, we may assume that D = div(t) for a local parameter t in ζ. We may assume
that Y = Spec(B), X = Spec(A) are affine varieties and that f ∈ A. Note that A⊗B OY,ζ is a
free OY,ζ-module of rank deg(ϕ). The Z-component of ϕ∗(f).D equals

NA⊗BOY,ζ/OY,ζ
(f)|Z = NA⊗BK(Z)/K(Z)(f̄) (1)

where f̄ denotes the canonical element in A ⊗B K(Z)/K(Z) induced by f . By the theory of
artinian rings, we have

A⊗B K(Z) ∼=
∏

ξ∈ϕ−1(ζ)

Oϕ∗(D),ξ

and so we deduce
NA⊗BK(Z)/K(Z)(f̄) =

∏
ξ∈ϕ−1(ζ)

NOϕ∗(D),ξ/K(Z)(f̄). (2)

Let tξ be a local parameter in the discrete valuation ring OX,ξ. Then

Oϕ∗(D),ξ
∼= OX,ξ/(OX,ξt

mξ

ξ )

where mξ is the multiplicity of ϕ∗(D) in ξ. This proves easily

NOϕ∗(D),ξ/K(Z)(f̄) = NK(ξ)/K(Z)(f̄)mξ . (3)

On the other hand, the Z-component of ϕ∗(f.ϕ
∗(D)) equals∏

ξ∈ϕ−1(ζ)

NK(ξ)/K(Z)(f̄)mξ .

Using (1)-(3), we get the claim. �

3 Moving Lemma

3.1 We assume that X is a smooth irreducible variety over a field K and that Z is an irreducible
closed subvariety ofX. Recall that the excess of an irreducible closed subset Y ofX with respect
to Z is

eZ(Y ) := codim(Y,X) + codim(Z,X)− codim(Y ∩ Z,X).

If Y is any closed subset of X, then the excess of Y with respect to Z is the maximum of the
excesses of the irreducible components of Y with respect to Z. The excess is always non-negative
and it is zero if and only if Z and Y intersect properly.
Now let f =

∑
fW be a K1-chain on X. The excess of fW with respect to Z is defined by

eZ(fW ) := eZ(W ) + eZ(D(fW ))

and the excess eZ(f) is the maximum of all eZ(fW ) with W ranging over all irreducible closed
subvarieties of X with fW 6= 1. Note that eZ(f) = 0 if and only if f intersects Z properly. We
can also extend the definition to cycles Z by using again the maximum over all components.
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The next lemma was used by J. Roberts [Ro] for his proof of Chow’s moving lemma. Gillet and
Soulé adapted it to the the case of K1-chains. We denote by G(n, r) the space of projective
linear subspaces of PnK of dimension r.

3.2 Lemma. Let X be an irreducible smooth subvariety of PnK and let Z be a cycle on X. For
a K1-chain f =

∑
fW with fX = 1, there is an open dense subset of G(n, n − 1 − dim(X))

whose K-rational points L satisfy

(a) L ∩X = ∅;

(b) eZ(CL(f).X − f) ≤ max{0, eZ(f)− 1}.

Proof: Clearly, we may assume K algebraically closed and that f = fW for a single W . By
the main lemma of [Ro] on p. 93, there is an open dense subset U of G(n, n−1−dim(X)) with

L ∩X = ∅ (4)

eZ(CL(W ).X −W ) ≤ max{0, eZ(W )− 1} (5)

and
eZ(CL(D(fW )).X −D(fW )) ≤ max{0, eZ(D(fW ))− 1} (6)

for all L ∈ U . Note that CL(fW ) intersects X properly. Shrinking U a little bit, we may
assume that the linear projection pL from 2.8 maps W birationally onto pL(W ). Here, we have
to assumeW 6= X. There is an open dense subsetW0 ofW mapping isomorphically onto pL(W0)
such that fW is a regular function on W0 without zeros. By construction, CL(fW ) is a regular
function without zeros on the open dense subset p−1

L (pL(W0)) of CL(W ). If P ∈ p−1
L (pL(W0)),

then there is a unique Q ∈ W0 with pL(P ) = pL(Q) and we have CL(fW )(P ) = fW (Q). In
particular, the restriction of CL(fW ) to W is equal to fW . If eZ(W ) ≥ 1, then it follows from
(5) that W has multiplicity one in CL(W ).X. In fact, this was one of the main steps in [Ro] in
the proof of lemma 6. If eZ(W ) = 0, then one can not directly conclude from (5) that W has
multiplicity 1. But the arguments of Roberts still apply for generic L ∈ U . By lemma 2.14, we
conclude that the W -component of the K1-chain CL(fW ).X equals fW . Using (6) and lemma
2.10, this leads to

eZ(D(CL(fW ).X − fW )) ≤ max{0, eZ(D(fW ))− 1}. (7)

The claim is now a consequence of (4),(5) and (7). �
The next statement is the moving lemma for K1-chains. It is done in [GS], however with a
weaker notion of proper intersection. As mentioned in 1.13, it is better to state the moving
lemma on X × P1

K rather than on X. Given a K1-chain F on X × P1
K intersecting the fibre

over t ∈ P1
K properly, we denote by Ft := F.(X × t) the fibre over t. We call F horizontal if

FW 6= 1 only for irreducible closed subvarieties W of X × P1
K mapping onto P1

K by the second
projection.

3.3 Lemma. Let X be a smooth quasiprojective variety over an infinite field K. Let Z be a
cycle on X and let f =

∑
fW be a K1-chain on X such that div(f) intersects Z properly on X.

Then there is a horizontal K1-chain F on X × P1
K such that

(a) F intersects X × 0 and X ×∞ properly on X × P1
K;

(b) F0 = f ;

(c) F∞ intersects Z properly on X;

(d) The non-proper components of intersection of div(F) by supp(Z) × P1
K are contained in

finitely many fibres p−1
2 (t1), . . . , p

−1
2 (tr) with ti ∈ P1

K − {0, 1}.
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Proof: Clearly, we may assume that X is an irreducible subvariety of PnK and that all W with
fW 6= 1 have the same dimension d. If d = dim(X), then f is a single rational function on X
and its pull back to X × P1

K fullfills the claim. So we may assume d < dim(X). We choose a
generic subspace L ⊂ PnK of dimension n − 1 − dim(X). For any j ∈ N, we define a K1-chain
fj on X by starting with

f0 := f

and then going on recursively with

fj := CL(fj−1).X − fj−1.

Note that CL(fj−1) intersects X always properly. By lemma 3.2, we have

eZ(f0) > eZ(f1) > · · · > eZ(fN) = 0

for some N ∈ N. A trivial algebraic calculation shows

f =
N−1∑
j=0

(−1)jCL(fj).X + (−1)N fN . (8)

The group PGL(n + 1, K) operates on K1-chains of PnK by ρ(g) := (ρ−1)∗(g) = ρ∗(g). We
choose a generic ρ ∈ PGL(n + 1, K) such that ρ(CL(fj)) intersects Z and also X properly on
PnK . There is a rational map γ from P1

K to PGL(n + 1, K) with γ0 equal to the identity and
γ∞ = ρ. Let U be a sufficiently small open subset of the domain of γ containing 0 and ∞. We
consider the morphism

ϕ : PnK × U → PnK , (P, t) 7→ γ−1
t (P ).

For a K1-chain h on PnK , we get a K1-chain ϕ∗(h) on PnK × U with the fibre property

ϕ∗(h)t = γt(h)

for all t ∈ U . This follows from the projection formula 2.17.
We may assume that ϕ∗(CL(fj)) intersects X × U properly on PnK × U . To see it, just check
the fibres over 0 and ∞ where it holds trivially by the fibre property above and then we may
pass to a smaller open subset U . We may also assume that ϕ∗(CL(fj)).(X × U) is a horizontal
K1-chain. Let Fj be the canonical extension of ϕ∗(CL(fj)).(X ×U) to a horizontal K1-chain of
X × P1

K . We define a K1-chain

F :=
N−1∑
j=0

(−1)jFj + (−1)Np∗1(fN) (9)

on X × P1
K . Here p1 is the first projection.

Using lemma 2.13 and lemma 2.10, we easily get

D(Fj) ∩ (X × U) ⊂ ϕ−1(CL(D(fj))) ∩ (X × U).

This leads to (a). It is also obvious that

div(Fj).(X × 0) = div(CL(fj))

and
div(Fj).(X ×∞) = div(CL(ρ(fj))).X.

Using flatness of the projection pL, we get

div(CL(fj)) = CL(div(fj)).
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For a generic choice of L, we prove by induction that div(fj) intersects Z properly onX and that
div(CL(fj)) intersects Z properly on PnK . Here, we use the excess lemma for cycles ([Ro], main
lemma on p. 93). Hence there is an open neighbourhood V of 0 in P1

K such that div(CL(γt(fj)))
intersects Z properly on PnK for t ∈ V . Similarly, we argue over an open neighbourhood of ∞.
therefore the non-proper components of intersection of div(Fj) by Z×P1

K are lying over finitely
many points of P1

K − {0,∞}. This proves (d).
Next, we handle (b). We prove first

(Fj)0 = CL(fj).X. (10)

We may assume that fj is given by a single rational function fj on an irreducible closed sub-
variety Wj. Then g := ϕ∗(CL(fj)) lives on the irreducible closed subvariety V := ϕ−1(CL(Wj))
of PnK × U . Furthermore, we put Y := X × U and D := PnK × 0. By definition, we have

(Fj)0 = (p1)∗((g.Y ).(X × 0))

where the first product is computed on PnK×U and the second product is on X×U . By lemma
2.15, we get

(Fj)0 = (p1)∗((g.Y ).D)).

We prove below that the following associativity holds

(g.Y ).D = g.(Y.D). (11)

We conclude that

(Fj)0 = (p1)∗(g.(Y.D))

= ϕ∗(g.(X × 0)).

Using the definition of g and projection formula 2.17, we get (10). Moreover, projection formula
2.17 shows

p∗1(fN)0 = (p1)∗(p
∗
1(fN).(X × 0)) = fN . (12)

Then (b) follows from (9), (10), (12) and (8).
Now we claim that

F∞ =
N−1∑
j=0

(−1)jρ(CL(fj)).X + (−1)N fN . (13)

The proof is similar as for (10). With the same notation and assumption as above but with
D = PnK ×∞, we have

(Fj)∞ = (p1)∗((g.Y ).D)) = (p1)∗(g.(Y.D))

as before. We conclude

(Fj)∞ = (p1)∗(g.(Y.D))

= (p1)∗(ϕ
∗CL(fj).(X ×∞)).

Now using p1 = ρ ◦ ϕ on X ×∞ and two times projection formula 2.17, we get

(Fj)∞ = ρ∗(CL(fj)).X
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proving (13). If B is an irreducible closed subvariety of X and C is an irreducible closed
subvariety of PnK intersecting X properly on PnK , then it is easy to see that B and C intersect
properly on PnK if and only if B and C ∩X intersect properly on X. This general remark, our
assumptions on ρ and lemma 2.13 imply that (Fj)∞ intersects Z properly on X. This proves
(c).
It remains to prove (11). We have a morphism ψ and a commutative diagram

π−1
V (Y )′

π2 //

ψ

��

V ′

πV

��
(Y ∩ V )′

π1 // PnK × U

of normalizations. Here, π1 and π2 are the normalization morphisms for Y ∩ V and π−1
V (Y ),

respectively. The existence of ψ follows from the fact that πV ◦ π2 maps π−1
V (Y )′ dominantly

onto Y ∩ V and from the universal property of normalizations. Since g is a rational function
on V , both g.Y and g.(Y.D) are computed on V ′. By birationality of normalization, there is a
rational function h on π−1

V (Y )′ with (π2)∗(h) = g′.π∗V (Y ). By lemma 2.16, we have

(π2)∗(h.π
∗
2π

∗
VD) = (g′.π∗V Y ).π∗VD.

On the right hand side, associativity follows immediately from lemma 2.14 since we have simply
to restrict functions without passing to the normalizations. We conclude that

(π2)∗(h.π
∗
2π

∗
VD) = g′.(π∗V (Y.D)). (14)

Lemma 2.18 shows that

ψ∗(h.π
∗
2π

∗
VD) = ψ∗h.π

∗
1(D) (15)

holds. Now the obvious equality

(π1)∗ψ∗h = (πV )∗(g
′.π∗V Y ) = g.Y

implies

(g.Y )′ = ψ∗h. (16)

Applying (16), (15) and (14), we get

(g.Y ).D = (π1)∗(ψ∗h.π
∗
1D)

= (π1)∗ψ∗(h.π
∗
2π

∗
VD)

= (πV )∗(g
′.π∗V (Y.D)).

By definition, the last term is g.(Y.D) proving (11). �

4 Rational Equivalence in Arithmetic Intersection The-

ory

4.1 LetX be a smooth complex quasi-projective variety endowed with its structure as a complex
manifold. Let fW be a non-zero rational function on the irreducible closed analytic subvariety
W . Then log |fW | denotes the current on X which maps the smooth differential form ρ to

(log |fW |)(ρ) :=

∫
W

log |fW | ∧ ρ.
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By additivity, we define log |f | for any K1-chain f =
∑
fW .

4.2 Now we recall some basic facts from the ∗-product of Gillet and Soulé. For details, the
reader is referred to [GS]. For a cycle Z on X, a Green’s current gZ is a current on X such that

ωZ := ddcgZ + δZ

is (the current associated to) a smooth differential form on X. Here, δZ is the current of
integration over the cycle Z. In 4.1, the current −2 log |f | is a Green’s current for div(f) with
ωdiv(f) = 0. Every cycle has a Green’s current. In [GS], logarithmic Green’s forms for Z are also
defined. They are smooth differential forms outside the support of Z with logarithmic growth
conditions along Z. It is proved that for every Green’s current gZ , there is a logarithmic Green’s
form ηZ with ηZ ≡ gZ , where ≡ means equality up to im(d) + im(dc). If Y is a cycle with no
component contained in the support of Z and ηY is a logarithmic Green’s form for Y , then we
define a current ηY ∧ δZ on X by mapping the smooth differential form ρ to

(ηY ∧ δZ)(ρ) :=

∫
Z

ηY ∧ ρ.

This is well-defined because the restriction of ηY to Z is integrable on Z. Finally, we define
gY ∧ δZ := ηY ∧ δZ . This is only well-defined up to the relation ≡.
If Y and Z intersect properly, then the ∗-product of Green’s currents gY and gZ is defined by

gY ∗ gZ := gY ∧ δZ + ωY ∧ gZ .

This is a Green’s current for the proper intersection product Y.Z, again only well-defined up
to ≡. Now let f be a K1-chain on X such that div(f) and Z intersect properly on X. Then we
have

log(|f |−2) ∗ gZ ≡ log(|f |−2) ∧ δZ .

It is a basic problem of arithmetic intersection theory to show that this is equivalent to the
Green’s current of a K1-chain (cf. 1.3 and 1.4). This will follow below from our moving lemma
for K1-chains 3.3. First, we handle an easier case.

4.3 Lemma. If f intersects Z properly, then we have

log |f .Z| ≡ log |f | ∧ δZ .

Proof: We may assume that f is given by a single fW ∈ K(W )∗. On the normalization W ′,
we have

log |f ′W .π∗(Z)| ≡ log |f ′W | ∧ δπ∗(Z).

This is almost by definition. Note that we may work directly on W ′ using differential forms
on singular spaces from Bloom-Herrera [BH]. Then the projection formula will give the claim.
For the convenience of the reader, we sketch the argument. For a logarithmic Green’s form ηZ ,
we get

log |f ′W .π∗W (Z)|−2 ≡ π∗W (ηZ) ∗ log |f ′W |−2 ≡ π∗W (ηZ) ∧ δdiv(f ′W ) + π∗W (ωZ) ∧ log |f ′W |−2.

Then the projection formula as a consequence of the transformation formula of integrals shows

log |fW .Z|−2 ≡ ηZ ∧ δdiv(fW ) + ωZ ∧ log |fW |−2 ≡ ηZ ∗ log |fW |−2.

Using again commutativity, we get the claim. �
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4.4 Let X be a variety over a field K. Then there is a boundary map

d :
⊕
V

K2(K(V )) −→
⊕
V

K1(K(V ))

from the E1-term of the Quillen spectral sequence where V ranges over all irreducible closed
subvarieties of X (cf. [GS], p. 128). Since K1(K(V )) = K(V )∗, the range of the map d is a
subgroup of the K1-chains. The quotient relation with respect to the range of d is denoted by
≡. We have the following commutativity result for our product of K1-chains.

4.5 Lemma. Let f be a K1-chain and let g be a non-zero rational function on an irreducible
normal variety X such that f intersects div(g) properly. Then we have

f .div(g) ≡ g.div(f).

Proof: We may assume that f is given by a single fW . Using lemma 2.16, it is enough to
prove the claim on the normalization W ′. So we have reduced the claim to the case where
f = f is also a non-zero rational function on X. Then the claim follows from the fact that
f.div(g)− g.div(f) is up to a sign equal to the tame-symbol which is a boundary (cf. [GS], p.
129). �

4.6 Let X be a smooth quasi-projective variety over an infinite field K. Let f be a K1-chain
on X such that div(f) intersects the cycle Z properly on X. We choose a horizontal K1-chain
F on X ×P1

K satisfying (a)-(d) of Lemma 3.3. Let t be the coordinate on P1
K and let p1 be the

first projection of X × P1
K . By (d) and refined intersection theory (cf. [Fu], chapter 8), there

is a finite subset S ⊂ P1
K − {0, 1} such that div(F).p∗1(Z) is well-defined as a cycle on X × P1

K

up to rational equivalence in the fibres over S. Since t is invertible on the fibres over S, lemma
4.5 shows easily that

h := t.(div(F).p∗1(Z))

is well-defined as a K1-chain up to ≡ by choosing a representative for div(F).p∗1(Z). Then we
define our K1-chain on X by

g := F∞.Z + (p1)∗(h).

4.7 Proposition. Under the hypothesis of 4.6, we have

log |g| ≡ log |f | ∧ δZ .

This equality of currents has to be understood on the complex analytic variety associated to
X and f , g and Z have to be replaced by the corresponding base changes.

Proof: If f1 and f2 are K1-chains on X equivalent with respect to the relation ≡ defined in
4.4, then we have log |f1| ≡ log |f2| (cf. p.129 of [GS]). Hence the left hand side of the claim is
well-defined. We have

log |g| = log |F∞.Z|+ (p1)∗(log |h|).
Using lemma 4.3, we get

log |F∞.Z| ≡ log |F∞| ∧ δZ .
Almost by definition, we have

log |h| ≡ log |t| ∧ δdiv(F).p∗1(Z).

Suppose for the moment that the intersection of div(F) and p∗1(Z) is proper. Using the basic
rules of the ∗-product and a logarithmic Green’s form ηZ for Z, we get

log |h| ≡ log |t| ∗ (log |F|−2 ∗ p∗1(ηZ))

≡ (log |t| ∗ (log |F|−2)) ∗ p∗1(ηZ)

≡ (log |F| ∧ δdiv(t)) ∗ p∗1(ηZ).
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By projection formula and lemma 2.14, we conclude

(p1)∗(log |h|) ≡ (log |F0| − log |F∞|) ∧ δZ .

Finally, lemma 3.3(b) proves
log |g| ≡ log |f | ∧ δZ

as claimed. In general, there are finitely many non-proper components of the intersection of
div(F) by p∗1(Z) lying over the finite set S ⊂ P1

K − {0, 1}. Then we use Theorem 2.2.2 on p.
116 of [GS] instead of associativity to justify the above considerations. �

4.8 Remark. Now we apply our result to the arithmetic situation described in 1.4. The goal
is to show that arithmetic rational equivalence is compatible with the arithmetic intersection
product. Let X be a quasiprojective K-variety with a regular separated and flat OK-model X
of finite type, where OK is the ring of integers of a number field K.
Recall that there is a canonical extension of a cycle Y on X to a horizontal cycle Y on X .
For a prime cycle, it is just the Zariski closure in X . Clearly, we have a similar extension for
K1-chains on X. For example, if fW is a rational function on an irreducible closed subset W
of X, then fW is the unique extension of fW to a rational function on W . By additivity, we
extend this notion to all K1-chains of X.

4.9 Proposition. Let f =
∑
fW be a K1-chain on X where W is ranging over all irreducible

closed subsets of X . Let Z be a cycle on X with generic fibre Z and let gZ be a Green’s
current for Z (to be understood after base change to C). We assume that div(f |X) and Z
intersect properly on X. On the generic fibre X, we are in the situation of 4.6 where the
moving lemma for K1-chains gives us a K1-chain g on X. Then we claim that

d̂iv(ḡ) ≡ d̂iv(f).(Z, gZ).

Proof: The claim means that
log |g| ≡ log |f | ∧ δZ

and
div(ḡ) ≡ div(f).Z .

As usual, the first identity has to be understood after base change to C. It follows from
proposition 4.7. In the second identity, ≡ means up to vertical rational equivalence, i.e. up to
the divisors of rational functions living on closed irreducible subvarieties contained in the finite
fibres of X . We denote by CHfin(X ) the group of cycles on X modulo the equivalence relation
≡. Then the second identity takes place in CHfin(X )⊗Q because one needs the isomorphism
to K-theory to justify the product on the right hand side (cf. [GS], 4.1). The proof of the
second identity follows the arguments of 4.7.
It is easy to see that the canonical extensions of equivalent K1-chains on X have equivalent
divisors on X . Hence the left hand side of the claim is well-defined. We have

div(g) ≡ div(F∞.Z) + (p1)∗(div(h)).

By lemma 4.10 below, we obtain

div(F∞.Z) ≡ div(F∞).Z .

Clearly, we have
div(h) ≡ div(t).div(F).p∗1(Z).

Using the rules of refined intersection theory, we get

div(h) ≡ div(t).div(F).p∗1(Z ).
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Using
(p1)∗(div(F).div(t)) ≡ div(F0)− div(F∞) ≡ div(f)− div(F∞)

and projection formula, we get the claim. �

4.10 Lemma. Suppose that f =
∑
fW is a K1-chain on X and Z is a cycle on X such that f

intersects Z properly on X. Then

div(f̄).Z̄ ≡ div(f .Z) ∈ CHfin(X )⊗Q.

Proof: It is enough to consider a single rational function fW and a prime cycle Z. Let
π̄ : W

′ → W be the normalization of W̄ . Clearly, the generic fibre π is the normalization of W .
Let f ′W := fW ◦ π. By assumption, the intersection of div(f ′W ) and π−1(Z) is proper on W ′.
We use first

div(f ′W ).π̄∗(Z̄) ≡ div(f ′W ).π∗(Z) ∈ CHfin(W
′
)⊗Q.

Then note that div(f ′W ).π∗(Z) is the divisor of the restriction of f ′W to π∗(Z). The latter is the
horizontal extension of the restriction of f ′W to π∗(Z). By the very definition, this gives

div(f ′W ).π∗(Z) = div(f ′W .π
∗(Z)).

We conclude that

div(f ′W ).π̄∗(Z̄) ≡ div(f ′W .π
∗(Z)) ∈ CHfin(W

′
)⊗Q.

Applying π̄∗, we get the claim by using the projection formula on the left hand side and the
definition of product on the right hand side. �
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