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Introduction

In diophantine geometry, heights of points are an important tool to handle finiteness
questions. If X is a projective variety over a number field, then the height of a point Pe X
with respect to an embedding of X into P" measures the arithmetic complexity of its co-
ordinates. Nesterenko and Philippon generalized this notion to subvarieties Y of X. They
defined the height of Y as the height of the Chow form associated to Y as a subvariety of
P" (cf. [Ph]). The Chow form is a multi-homogeneous polynomial and its height is the
height of the vector of coefficients viewed as a point in a suitable projective space. Equi-
valently, Faltings [Fa] defined the height of Y as an arithmetic intersection number. This
definition points out that the height of Y is the arithmetic analogue of the degree of Y in
algebraic geometry. For the comparison to the Nestrenko-Philippon height, the reader is
referred to [BoGS]. In this paper, Bost-Gillet-Soulé prove a lot of important properties
of these heights, e.g. an arithmetic Bézout theorem. If the embedding is changed, then the
difference of heights is bounded by a multiple of the degree. This generalization of Weil’s
theorem is proved in [Gul].

In his studies of heights of rational points, Weil pointed out that most of the pro-
perties are coming from local heights (cf. [We]). For any field K with a fixed absolute
value | |,, there is a local height of a K-rational point P with respect to the metrized line
bundle (L, || ||,)- It depends on the choice of an invertible meromorphic section s of L and
is given by —log||s(P)||,. In the number field case, any global height is the sum of the
corresponding local heights with respect to all places of the field. For example, Weil’s
decomposition theorem is the local version of Weil’s theorem mentioned above.

Using Falting’s definition, it is quite clear how to define local heights of subvarieties
in the archimedean and in the discrete case. If the valuation is archimedean, then it is
given by a #-product of Green currents of the form [log||s||” 2] on the subvariety. For a
discrete valuation, the local height of a t-dimensional subvariety Y of X is an intersection
number on a model X of X over the discrete valuation ring. More precisely, let D, ..., D,
be Cartier divisors on X, then the local height of Y is the intersection number D, ... D,.Y
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where Y is the closure of ¥ in X. Note that D, induces an invertible meromorphic section
s; and a metric on the line bundle L; = O(D;|x) of X. It was noted by Zhang [Zh] that
the dependence of the local height of Y on the model is measured by the metrics.

If the non-archimedean valuation v on K is not necessarily discrete, then intersection
numbers on a model are not defined since the valuation ring K° has not to be noetherian.
In [Gu2], local heights of t-dimensional subvarieties are characterized by five properties.
They dependAon (L i»S;)i=o...... Where s;1s an invertible meromorphic section of the metrized
line bundle L; on X. The first property is multi-linearity and symmetry in (L;,s;). Then it
is assumed that local heights are functorial. Furthermore, the behaviour of the local heights
under change of metrics or sections is described. Finally, the local height of subvarieties
on a multi-projective space is given in terms of the Chow forms. Clearly, in the discrete
and in the archimedean situation, the local heights described above satisfy these five
properties ([Gu2], Theorem 1.10, Theorem 1.14).

If the ground field K is an M-field, then the existence of local heights of subvarieties
leads to a theory of global heights of subvarieties generalizing Weil’s results for points.
(An M-field is a field with a family of absolute values as number fields, function fields or
the field of meromorphic functions on the unit disc playing a fundamental role in Nevanlinna
theory.) This gives a unified theory of global heights. For example, Weil’s theorem leads
to a generalization of the first main theorem in Nevalinna theory. For details we refer to
[Gu2].

The goal of this article is to show the existence of local heights in the non-archimedean
situation. The idea is to replace the algebraic K°-models of X by formal K°-models of
the rigid analytic variety associated to X. First we define an intersection product of a
Cartier divisor with a cycle on a rigid analytic variety and then we extend it to admissible
formal K°-models using the theory of Bosch-Liitkebohmert ([BL 3], [BL4]) initiated by
Raynaud. It is shown that the dependence of this intersection product on the model is
measured by the metric. Similarly as in non-archimedean Arakelov Theory [BIGS], we
consider cycles as projective limits over the family of all models. For a quasi-compact and
quasi-separated rigid analytic variety, we get a model-free description of the intersection
product.

The paper is organized as follows. In section 1, we give the necessary definitions and
results from rigid and formal geometry. The basic reference for rigid geometry is [ BGR].
Let K be a field with a complete non-archimedean absolute value and corresponding
valuation ring K°. For an admissible formal scheme X over K°, there is a canonical rigid
analytic variety X associated to X called the generic fibre of X. We call X a formal K°-
model of X. Instead of formal models of X, we can consider formal analytic structures on
X. The latter are given by topologies on X allowing reductions of X over the residue field.
They are coarser than the Grothendieck topology of X. Very important for the following
sections is the interplay between formal analytic structures and formal models described
in 1.10 and Proposition 1.11. Finally, we state Raynaud’s description of rigid geometry
in terms of formal K°-models.

In section 2, we define the proper intersection product of a Cartier divisor and a
cycle on X. Locally, X is given by a K-affinoid algebra .«Z. On the noetherian scheme
Spec.oZ, we can use [EGAIV] or [Fu] to define this intersection product. Locally, this
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induces a cycle on X and by a gluing process, we get our intersection product. It is bilinear
and satisfies projection formula. The action of Cartier divisors is commutative. By the
above localization process, these properties follow immediately from the corresponding
properties on noetherian schemes. Finally, we consider the effect of base change.

In section 3, we define the Weil divisor cyc(D) associated to a Cartier divisor D on
the formal K°-model X of X. A cycle on X is a formal sum of a cycle on the generic fibre
of X called the horizontal component and of a cycle on the special fibre X of ¥ called the
vertical component. The horizontal part of cyc(D) is given by the considerations of section
2. To define the multiplicity of cyc(D) in an irreducible component W of ¥, we assume
first that K is algebraically closed and that X is formal affine with reduced special fibre X.
By considerations of Berkovich [Be1], there is a distinguished multiplicative semi-norm
on the algebra .o/ of X associated to W. For ae .o/ it is given by sup|a(x)| where x is
ranging over all points of X with reduction not contained in any other component than
W. Applying —log to this semi-norm, we get the multiplicity of a in W. Using this con-
struction locally, we obtain Weil divisors associated to Cartier divisors for K algebraically
closed and for formal K°-models X with reduced special fibre. By base change, projection
formula and linearity, we can always reduce to this situation. Let us give an explanation
for this construction. The semi-norms of Berkovich occur in the frame work of formal
analytic structures on X. If X is reduced and K is algebraically closed, then there is a
one-to-one correspondence between formal-analytic structures on X and formal K°-models
of X with reduced special fibre. If K is not algebraically closed, then reductions of formal
analytic structures behave not well with respect to base change and so we can not use
them to define the multiplicities. However, if the reduction of X is geometrically reduced,
then it is shown in Lemma 3.21 that we may compute the multiplicites in the special fibre
directly on X. If the base field is stable, then we deduce in Lemma 5.7 a formula for these
multiplicities (without any assumptions on the reduction) by using ramification indices
and residue degrees.

In section 4, we define the intersection product of a Cartier divisor D and a cycle &
on X intersecting properly in the generic fibre X. This is now immediate using sections 2
and 3. Then we prove projection formula. The idea is to reduce to the case of a finite field
extension. Then projection formula is just the well-known formula relating the degree of
the extension to ramification indices and residue degrees.

Commutativity of the intersection product is proved in section 5. Let D, D’ be Cartier
divisors on X intersecting properly in the generic fibre. Then we have to prove
D.cyc(D") = D'.cyc(D). If the intersection is not proper on X, the vertical parts seem to
be only equivalence classes with respect to rational functions on the special fibre. Since
we deal with divisors, we can give a refined interpretation of D.cyc(D’) as a cycle. The
idea is to normalize the equation of D with respect to the semi-norm corresponding to a
vertical prime component of cyc(D’). So commutativity is an identity of cycles. Let us
sketch the proof of commutativity. By base change, we may assume that X is a curve over
an algebraically closed field. Then we show that X may be replaced by an admissible open
subset of a non-singular projective curve. The semi-stable reduction theorem gives us a
formel K°-model with semi-stable reduction. By projection formula, it is allowed to change
models and so we use the semi-stable model to compute explicitly the multiplicities of
both sides in an irreducible component of the special fibre.



64 Gubler, Local heighs of subvarieties

Now let Y be an algebraic variety over K. It induces a rigid analytic variety Y *" over
K and any cycle on Y gives rise to a cycle on Y*". In section 6, we show that the proper
intersection product of Cartier divisors and cycles on Y is compatible with the corre-
sponding intersection product on Y?*" considered in section 2. Moreover, if the valuation
on K is discrete and % is an algebraic flat K°-model of Y, then we have an intersection
product on %. It is shown that under formal completion it is compatible with the intersection
product of section 4.

Back to the general case, we study in section 7 metrized line bundles on the quasi-
compact and quasi-separated rigid analytic variety X. We introduce formal metrics and
we show that they are induced by formal K°-models and that any line bundle has a formal
metric. A metric is called approximable if it is the uniform limit of roots of formal metrics.
By the Stone-Weierstrass theorem, we prove that a metric is approximable if and only if
it has a continuous extension to the Berkovich compactification of X.

In section 8, we consider the directed family of all formal K°-models of the quasi-
compact and quasi-separated rigid analytic variety X. The projective limit of the group of
vertical cycles gives us a definition of vertical cycles on X not depending on a particular
choice of a formal K°-model. Let D be a Cartier divisor on a formal K°-model X. It
induces a line bundle L on X with an invertible meromorphic section s and a formal metric
|| ||. The vertical part of the intersection product of D with a horizontal cycle Z on X gives
rise to a vertical cycle on X depending only on the generic fibre of Z and (L, || ||, s). So
we get a model-free description of intersection product.

In section 9, we define local heights of cycles on a proper algebraic variety Y over
K. They depend on line bundles L, ..., L, of ¥, on invertible meromorphic sections s; of
L; and on formal metrics || || of L;. Such a local height is defined for all -dimensional
cycles Z on Y such that the intersection of Z, div(s,), ..., div(s,) is empty. Using the theory
of section 8, it is given by an intersection number. We show that these local heights have
the five characteristic properties described above.

In the appendix, we deduce some basic properties of coherent (,-modules on admis-
sible formal affine schemes over K°. They are used in section 3 to study the closure of a
subvariety of X in a formal K°-model X.
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1. Basic facts from rigid and formal geometry

Let K be a field with a non-trivial non-archimedean complete absolute value | |.

1.1. On the polynomial ring K[x, ..., X, ], we have the Gauss norm
Yoooa, ., xpexr = max a4, ]
Viseuos V=0 Viseons vn=0
The completion of K[x,, ..., x,] with respect to the Gauss norm is called the Tate algebra

and is denoted by K<{x, ..., x,>. A K-affinoid algebra .«/ is a quotient of a Tate algebra.
Using the quotient norm, .o/ is a Banach algebra. Banach’s open mapping theorem implies
that any algebra homomorphism between K-affinoid algebras is continuous and bounded
([BGR], 6.1.3). So the Banach algebra structure of .7 is uniquely determined by the
algebraic structure. A homomorphism of K-affinoid varieties is simply an algebra homo-
morphism. Any K-affinoid algebra is noetherian ([BGR], Proposition 6.1.1/3).

1.2. A K-affinoid variety is a pair Sp.o/:=(Max.«Z,.o/) where .o/ is a K-affinoid
algebra and Max.</ is its spectrum of maximal ideals. The category of K-affinoid varieties
is the dual category of K-affinoid algebras, i.e. a morphism Sp.o - Sp# is an algebra
homomorphism # — .o/ together with the induced morphism Max.o/ - Max %#. The K-
affinoid variety induced by the Tate-algebra K<{x,, ..., x,» is called the unit ball and is
denoted by B". Any K-affinoid algebra may be viewed as a subspace of a unit ball defined
by finitely many power series.

1.3. Let X=Sp.«/ be a K-affinoid variety and let x € X, i.e. x is a maximal ideal
m,. of /. The residue field .«//m, is a finite extension of K ([BGR], Corollary 6.1.2/3).
Since K is complete, there is a unique extension of | | to an absolute value on .«//m,. For
ae of, we define |a(x)| as the absolute value of the class of a in .oZ/m, . The supremum
semi-norm ([BGR], 6.2.1) on .o/ is defined by

|a|5up:: Sup |a(x)|‘
xeSp.o

It is a norm if and only if .o/ is reduced ([BGR], Proposition 6.2.1/4). Consider

o °={aed;|al,, =1}

sup =

and

A°°={ae .o |aly,,<1}.

The reduction .7 of .7 is defined by .o7:=.o7°/.<7°°. The reduction X of X is the affine
scheme X:= Spec.o/ of finite type over K ([BGR], Corollary 6.3.4/3). The algebra .o/ is
reduced since the supremum semi-norm is power multiplicative.

If there is an epimorphism K{x,, ..., x,> — o/ such that the residue norm coincides
with the supremum semi-norm on .7, then .o/ is called distinguished ([BGR], Definition
6.4.3/2). If K is algebraically closed, then .o/ is distinguished if and only if .« is reduced
([BGR], Theorem 6.4.3/1).



66 Gubler, Local heighs of subvarieties

1.4. A rational domain in X = Sp.o/ is a set

XG’): xeX;| I slg™@]j=1,....n}

where g, f1, ..., f, are elements of .o/ without common zeros. There is a canonical K-affinoid

f f
algebra .o/ < - > satisfying a certain universal property ((BGR], 7.2.2, 7.2.3) such that X ( —>
g g

f
is the spectrum of maximal ideals in .o/ < - > As a special case ([BGR], Corollary 7.2.3/8)
g

of rational domains, we have the Laurent domains
Xhg V={xeX; | fWISL]g®IZ1,i=1,...,mj=1,...n)

in X where f1, ..., fon» €15 - - -» &, € . A strict Laurent domain is a Laurent domain as above
with fy=---=f, =1and g,,...,g,€.97°. A strict Laurent domain is denoted by X (g™ 1).

More generally, one defines affinoid subdomains of X ([BGR], 7.2.2). They are char-
acterized by the universal property mentioned above. By a theorem of Gerritzen and
Grauert, they are finite unions of rational domains ([BGR], Corollary 7.3.5/3). So it is
enough for our purposes to know rational domains.

1.5. On the K-affinoid variety X = Sp.<Z, there is the (strong) Grothendieck topology
([BGR], 9.1.4). The rational domains in X form a basis of this Grothendieck topology
and any admissible open covering of a rational domain has a refinement by finitely many
rational domains. There is a canonical sheaf of rings ¢y on the Grothendieck topology of

g g

f
for any rational domain X<—> in X.
g

1.6. We have a canonical map n: X =Sp.«Z — X of sets. A subset of X is called
formal open if it is the inverse image of a Zariski open subset of X. This gives a quasi-
compact topology on X ([Bo2], §1). Obviously, the strict Laurent domains form a basis
of this so-called formal topology. The Grothendieck topology is finer than the formal
topology and so we can restrict 0 to get a ringed space Spf.e/ on the formal topology of
X. Such spaces are called formal K-affinoid varieties. Any homomorphism .o/ —» % of
K-affinoid varieties induces a morphism Spf# — Spf.«/ of ringed spaces. Only such mor-
phisms are said to be morphisms of formal K-affinoid varieties.

1.7. A locally G-ringed space over K is a pair (X, 0y) where X is a set with a
Grothendieck topology and Oy is a sheaf of K-algebras on the Grothendieck topology
such that the stalks are local rings. The morphisms of locally G-ringed spaces over K are
similarly defined as morphisms of locally ringed spaces ((BGR], 9.3.1). A K-affinoid variety
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is a locally G-ringed space over K and morphisms of K-affinoid varieties are the same as
morphisms of locally G-ringed spaces over K ([BGR], Proposition 9.3.1/1).

A rigid analytic variety over K is a locally G-ringed space (X, ¢y) over K which has
an admissible open covering by K-affinoid varieties and which satisfies (G,), (G,) and (G,)
of [BGR], 9.1.2. The last three conditions are of minor importance here and if they are
not satisfied, we may construct a slightly finer Grothendieck topology with the same basis
such that (G,), (G,), (G,) are fulfilled. The category of rigid analytic varieties over K is
viewed as a full subcategory of the locally G-ringed spaces over K, i.e. they have the same
morphisms.

1.8. A formal analytic variety over K is a K-ringed space (X, () (i.e. X is a topological
space and @, is a sheaf of K-algebras on X) such that for any x € X, there is an open
neighbourhood U such that (U, Uy|y) is a formal K-affinoid variety. Such an U is called
a formal open affinoid subspace of X.

A morphism of formal analytic varieties over K is a morphism of K-ringed spaces
which induces locally a morphism of formal K-affinoid varieties. Since the category of K-
affinoid varieties is equivalent to the category of formal K-affinoid varieties, we can paste
the formal affinoid open subspaces together as rigid analytic varieties over K ([BGR],
Proposition 9.3.2/1) to get a rigid analytic variety X*" over K. A morphism ¢ : X —» % of
formal analytic varieties over K induces a morphism ¢*": X*" — #*" of rigid analytic
varieties over K since it is determined by local formal K-affinoid data.

An important property of a formal analytic variety X over K is that it has a canonical
reduction X: For any formal open affinoid subspace U, we have the reduction U. The
schemes U paste together to give a reduced scheme ¥ locally of finite type over K [Bo2].
The following statement is proved in [Bo2], § 3.

Theorem 1.9 (Bosch). (i) A4 formal analytic variety over K is formal K-affinoid if and
only if its reduction is affine.

(1) A4 morphism of formal analytic varieties over K is finite if and only if its reduction
is a finite morphism of schemes.

(iii) A formal analytic variety over K is separated if and only if its reduction is a
separated scheme.

1.10. A Kr-algebra A is called admissible if it is isomorphic to the quotient of
K°<{x,,...,x,» by anideal / and if 4 has no K°-torsion. The latter is equivalent to flatness.
If A is admissible, then 7 is finitely generated ([BL 3], Proposition 1.1).

A formal scheme X over K° is said to be admissible if it is locally isomorphic to a
formal affine scheme Spf 4 where 4 is an admissible K°-algebra. Note that .o/ = 4 ®. K
is a K-affinoid algebra. Moreover, we can glue the formal K-affinoid varieties Spf.o/
together and we obtain a formal analytic variety X/ 2" over K. We denote the rigid ana-
lytic variety corresponding to X/ 2" by X2",
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Conversely, let X be a formal analytic variety over K. Locally, X looks like Spf.o/
for a K-affinoid algebra .. Then .o7° has no K°-torsion and we can glue the formal affine
varieties Spf.oZ° together to obtain a formal scheme X7/ 5% over K°.

For a formal scheme X over K°, we denote the special fibre by ¥. It is the K-scheme
whose underlying topological space is the same as the one of X and whose sheaf of regular
functions is given by Oy =0y Q- K

We have a natural finite morphism (¥/ ")~ 1 X of K-schemes, locally induced by
A®y- K - (A ®¢ K)~ ([BL2], §1). Clearly, the above maps X — %f an X — XJSseh,
X - X are all functorial. The morphism (¥/7*")~ — ¥ is surjective if the formal scheme
X over K° is admissible ([BL2], §1).

The next result of Bosch, Liitkebohmert ([BL2], Lemma 1.1) was stated in the case
of a discrete complete valuation, but the proof holds in general. A formal analytic variety
is called distinguished if it is locally isomorphic to Spf.e/ for a distinguished K-affinoid
algebra .of.

Proposition 1.11.  The functors X — X/ 75" qnd X — X/ 7" give an equivalence be-
tween the category of distinguished formal analytic varieties over K and the category of
admissible formal schemes over K° with reduced special fibre. For any distinguished formal
analytic variety X over K, the canonical morphism X — (X' 7™~ is an isomorphism.

1.12. We denote by 7 a principal ideal of K°, I + K°. Let X be an admissible formal
scheme over K° and let #:=1(; be an ideal of definition. The formal scheme X may be
viewed as a direct limit of schemes X,:=X ®,-(K°/I**") (e N). An admissible formal
blowing up is a morphism p : X' — X obtained by the following construction: Let #" be a
coherent ideal of (), which is locally on a formal affine neighbourhood Spf A induced by
a finitely generated ideal of 4 containing a power of /. Then

X':= lim Proj @ (A" @, (Oy | F**1))

/IGN

and p is the natural projection. Note that X’ is an admissible formal scheme over K°
([BL3], Proposition 2.1). A morphism X — % in the category of admissible formal schemes
over K°, localized by admissible formal blowing ups, is a diagram

where ¢ is a morphism of admissible formal schemes and p is an admissible formal blowing
up.
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Composition of two morphisms is given by

X' &y’

Py NG . p} N
X @ 2 3
X' X, %'

= v N
X 3

This is well defined since admissible formal blowing ups are stable under composition and
base change ([BL3], Remark 2.4).

For a detailed proof of the following result of Raynaud [R], the reader may consult
[BL3], §4.

Theorem 1.13. There is an equivalence between the category of quasi-compact admis-
sible formal schemes over K°, localized by admissible formal blowing ups, and the category
of rigid analytic varieties which are quasi-compact and quasi-separated. It is induced by the
Sfunctor X — X*".

Proposition 1.14 (Kiehl). Let ¢: X —» Y be a proper morphism of rigid analytic
varieties over K. For re N, the set {y €Y |dim f~'(y) 2 r} is an analytic subset of Y.

Proof. This follows from [Ki2] and the proper mapping theorem [Kil]. O

2. Divisors on rigid analytic varieties

Let K be a field with a non-trivial non-archimedean complete absolute value | | and
let X be a rigid analytic variety over K.

2.1. An analytic subset of X is a subset Y of X which is locally on a K-affinoid
neighbourhood given as the zero set of finitely many regular functions. A cycle on X is a
locally finite formal sum

ZnYY

where ny € Z and Y ranges over all irreducible analytic subsets of X. Locally finite means
that it exists a covering {U,} of X, admissible with respect to the Grothendieck topology,
such that any element U, of the covering intersects only finitely many Y with n, +0. A
Weil divisor is a cycle on X such that all Y with ny, % 0 have codimension 1 in X.

Definition 2.2. Extending [EGA IV], §21 to G-ringed spaces, one has a theory of
Cartier divisors. More precisely, let . be the subsheaf of @, consisting of the elements
which are not zero divisors. The sheaf of meromorphic functions is given by .4y :== Oy (¥ ~1).
It is a sheaf of K-algebras. Let .Zy (resp. (O)f) be the sheaf of invertible elements in .4y
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(resp. (). A Cartier divisor on X is a global section of .Zy/ 0. Global sections of s
are called invertible meromorphic functions.

Remark 2.3. Let Z be an invertible sheaf on X and let s be an invertible mero-
morphic section of %, i.e. locally, under a trivialization, s corresponds to a section of .Z5F.
This local section is independent of the trivialization up to ¢F and so we get a well-
defined Cartier divisor div(s). The results and proofs of [EGA IV ], 21.1-4 remain true if
we replace ringed spaces by G-ringed spaces.

Remark 2.4. Consider a K-affinoid variety Sp.«Z. Then there is a one-to-one corre-
spondence between analytic subsets of Sp.oZ and closed subsets of Spec.o/ using the same
ideal of vanishing. More generally, there is a one-to-one correspondence between closed
subspaces of Sp.oZ and closed subschemes of Spec.oZ. This will be used to reduce the study
of cycles on rigid analytic varieties to problems of cycles on affine noetherian schemes.

2.5. Given a Cartier divisor D on the rigid analytic variety X over K, we associate
to D a canonical Weil divisor cyc(D) by the following construction: Locally, X is iso-
morphic to a K-affinoid variety Sp.«Z. We may assume that the restriction of D to Sp .o/
is given by a single equation y. We may view y as a rational function on the noetherian
scheme Spec.o/. We consider its associated Weil divisor on Spec.eZ. Using Remark 4, it
induces a Weil divisor on the K-affinoid variety Sp.«Z. To define a Weil divisor cyc(D) on
X, we have to check that these locally defined Weil divisors agree on overlapping charts.
It is enough to prove div(y) nSp.«/'= div(yls, ) for a K-affinoid subdomain Sp.«/" of
Sp.oZ. Note that .o/’ is a flat .oZ-algebra ([ BGR], Corollary 7.3.2/6). Then the claim follows
from the fact that, for a flat morphism of noetherian schemes, the formation of Weil
divisor is compatible with pull-back ([EGA IV], Proposition 21.10.6).

2.6. Next we define proper push-forward of cycles. Let ¢ : X — X’ be a proper
morphism of rigid analytic varieties over K ([BGR], 9.6.2).

First we define the push-forward of an irreducible analytic subset Y of X. By the
proper mapping theorem ([Kil], Satz 4.1), Y':=¢(Y) is an irreducible analytic subset of
X' If the dimension of Y’ is smaller than the dimension of ¥, then let ¢, (Y):=0. Now we
assume that both dimensions are equal. Let y:Y — Y’ be the restriction of ¢. Outside a
lower dimensional analytic subset W of Y, y is a finite morphism (by using Proposition
1.14 and [BGR], Lemma 9.6.3/4). Let Sp.oZ’ be an admissible open K-affinoid subset of
Y'\W and let Sp.«Z:=v~ '(Sp.e/’). Then the corresponding morphism Spec.«# — Spec./’
is also finite. Using Remark 4 and the definition of finite push-forward for noetherian
schemes ([EGA 1V], 21.10.14), we get a push-forward for Sp .oZ. We claim that this locally
defined push-forwards can be glued to get n(Y'\W) for some ne N. Then we define
¢, (Y)=nY" Let Sp#’ be an affinoid subdomain of Sp.«/’ and let Sp#:=y~'(Sp%’). It
is enough to show that the push-forward of Sp.oZ coincides on Sp %’ with the push-forward
of Sp#. Since .o/ is a finite .«/-algebra, we have #=%4'®_ .o/ ([BGR], Proposition
3.7.3/6). Now the claim follows from the fact that, for noetherian schemes, finite push-
forward commutes with flat pull-back in a cartesian diagram ([Fu], Proposition 1.7, §20).

The above considerations defined the push-forward of an irreducible analytic subset
of X as a multiple of the image. By linearity, we extend ¢, to all cycles. This is well-
defined since the image of a locally finite family of analytic subsets in X is locally finite
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in X' (use the definition of properness). If ¢': X' — X" is also a proper morphism of rigid
analytic varieties over K, then (¢'c @), = ¢, ° ¢,

2.7. We associate to a closed analytic subspace W of X a canonical cycle

cyc(W) => nyY

where Y ranges over all irreducible components of W and ny is the multiplicity of W in Y.
To be more precise, let Y be an irreducible component of W and let U= Sp.«/ be an
admissible open K-affinoid subset of X. Then W U corresponds to a closed subscheme
of Spec.«/ (Remark 4) which has a well defined cycle cyc(W n U). Since this construction
is compatible with pull back with respect to a flat morphism of noetherian schemes ([ Fu],
Lemma 1.7.1, Example 20.1.3), the cycles cyc(Wn U) induce a global cycle cyc(W).

2.8. Let ¢: X' — X be a flat morphism of rigid analytic varieties over K. For an
irreducible analytic subset Y of X, let ¢*(Y):=cyc(p ' (Y)). Here ¢! (Y) is the analytic
subspace of X given by the image of the ideal of Y. By linearity, we extend the definition
to define a homomorphism ¢ * mapping cycles on X to cycles on X'. Let U = Sp.«/ be an
admissible open K-affinoid subset of X. Then Yn U is given by a K-affinoid algebra .o7,.
If U'=Sp.«/’ is an admissible open K-affinoid subset of X’ mapping into U, then
@ '(Y)n U’ is given by the K-affinoid algebra .o7; ®_,.o7". Using Remark 4, we see that
o*(Y)n U’ is the same as the pull-back of the subscheme corresponding to Yn U. Using
this local consideration and [Fu], Lemma 1.7.1, Example 20.1.3, it follows that

¢* (cyc(W)) = cyc (o™ '(W))
for any closed analytic subspace W of X.

Definition 2.9. Let D be a Cartier divisor of X and let Y be an irreducible analytic
subset of X. As usual, we equip Y with the induced structure. The support of D is the
closed analytic subset | D| of X consisting of the points x € X where a local equation of D
is not a unit in Oy .. We say that D intersects Y properly if Y is not contained in a com-
ponent of | D|. For such Y, the restriction of D to Y is a well-defined Cartier divisor with
associated Weil divisor D.Y. More generally, D intersects a cycle Z properly if D intersects
all components of Z propertly. For such Z = 2, Y, the cycle

D.Z:=%Xn,DY
is called the intersection product of D and Z.

Proposition 2.10. Let ¢ : X — X' be a morphism of rigid analytic varieties and let D'
be a Cartier divisor on X'

(a) Suppose that ¢ is proper. If Z is a cycle on X such that ¢*(D’) intersects Z pro-
perly, then

¢, (p*(D").Z)=D".¢,(Z) (Projection formula).
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(b) Assume that ¢ is flat and that D' intersects a cycle Z' properly in X'. Then
¢*(D"Z") = ¢*(D").¢*(Z").

Proof. To prove (a), we may assume that Z is an irreducible analytic subset,
Z=cyc(X)and ¢(X)=X" Let [X': X] be the degree of ¢, then we have to prove

0, (cyc(p*(D")) = [X': XJcyc (D).

Clearly, we may assume that X and X’ have the same dimension, otherwise both sides of
the identity are zero. Using Stein factorization ([BGR], Proposition 9.6.3/5), it is enough
to prove the claim for finite ¢ and for ¢ with Oy, = ¢, Oy.

For finite ¢, we have seen in 2.6 that push-forward is locally induced by push-forward
of schemes. Therefore the projection formula for finite ¢ is a consequence of the projection
formula for finite morphisms of noetherian schemes.

Now assume that ¢ satisfies Oy, = ¢, Oy. Then ¢ is surjective and has connected fibres
([BGR], Lemma 9.6.3/4). There is a lower dimension analytic subspace W' of X’ such
that ¢ is an isomorphism outside of W' (Proposition 1.14 and [BGR], Lemma 9.6.3/4).
We claim that /' may be chosen of codimension at least 2. If this is true then it is sufficent
to check the projection formula outside of W". Since the restriction of ¢ to ¢~ '(X'\ W)
is an isomorphism onto X'\ W, the claim follows immediately. It remains to prove that
W’ may be chosen of codimension at least 2. Assume that W’ has a component Y’ of co-
dimension 1 in X’. Consider the morphism

p:Y=0 1Y) > Y

induced by ¢. The codimension of Y in X is one. Since the fibres of y are connected, there
is a lower dimensional analytic subset W, of Y’ such that y is bijective outside of Wj}.. In
W', we replace the irreducible components Y’ by the sets W,.. This leads to an analytic
subset W of codimension at least 2 in X. Moreover, ¢ is bijective outside of W". We
conclude that ¢ is an isomorphism outside W ([BGR], Lemma 9.6.3/4).

To prove (b), note that the statement is local in X' and in X. So we can reduce to
the case where X and X’ are K-affinoid varieties. But then, as we have seen in 2.8, the flat
pull-back is induced by the corresponding flat pull-back of noetherian schemes. Therefore,
the claim follows from the corresponding statement for noetherian schemes ([EGA IV],
21.10.6). O

Proposition 2.11. Let D, D’ be Cartier divisors on X with proper intersection. (Note
that this always means that the supports intersect properly.) Then

D.cyc(D") = Dicyc(D).
Proof. This is a local statement. So we may assume that X is a K-affinoid variety.

Then the claim is a consequence of the corresponding statement for schemes ([ Fu], Theorem
2.4 generalizes to this situation). O
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Proposition 2.12. Let

;v
X2 X2

o

X1 e X
be a Cartesian diagram of rigid analytic varieties over K with ¢ proper and ¢ flat. Then ¢’
is proper, ' is flat and p* o @, = @, o p'*.

Proof. As properness is preserved under base change ((BGR], 9.6.2), the morphism
¢’ is proper. To prove flatness of ', we may assume that all varieties are K-affinoid. By
[BL4], Theorem 5.2, there is a flat morphism X; — X, of admissible formal schemes over
K° with generic fibre y. Using Theorem 1.13, there is an admissible formal scheme X,
over K° and a K°-morphism X, — X, with generic fibre ¢. Let X}:=X, X, X{, then the
first projection extends . The reduction of X;, — X, modulo powers of some fixed = € K °°
is flat. We conclude that X, — X, is flat ((BL 3], Lemma 1.6). This proves flatness of ¢".

Finally, we have to prove
¥ (0, (V) = 0, (p"*(Y))

for an irreducible analytic subset ¥ of X,. We may assume Y = cyc(X,) and ¢ (X,) = X;.
Since a flat morphism is open ([BL 4], Corollary 5.11), and since ¢ is finite outside a lower
dimensional closed analytic subset of X, we may assume that ¢ is finite. Then the diagram
in Proposition 12 is cartesian in the sense of noetherian schemes. Then the claim follows
exactly in the same way as [Fu], Proposition 1.7. 0O

Let K’ be a complete field which is an extension of K such that the absolute values
coincide on K. Then we have the base change X ®; K’ of X to K’ ((BGR], 9.3.6). It is a
rigid analytic variety over K, given Ically over the admissible open K-affinoid subset Sp.«/
of X by Sp.o«/ ®; K' where .o/ ®, K' is the completion of ./ @ K’ with respect to the
tensor product semi-norm.

Proposition 2.13. The following constructions commute with base extension to K':

(a) associated Weil-divisor of a Cartier-divisor;

(b) proper push-forward,

(c) cycle associated to a closed analytic subspace;

(d) flat pull-back;

(e) proper intersection product of a Cartier divisor with a cycle.

Proof. As usual, it is enough to prove the claim for K-affinoid varieties. Then
o ®y K' is a flat o7/-algebra. To prove this, let 4 be an admissible K°-algebra such that

A®y K= o/ For the (K')-algebra B:= 4 ®. (K')°, we have B Q) K' = o @K' Itis
enough to show that B is a flat .»/-algebra. Since B/IB is a flat A/IA-algebra for any
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principal ideal 7 < K°°, this follows from [BL 3], Lemma 1.6. (There it is assumed that A
and B are of topological finite presentation over the same valuation ring, but the proof
also applies to our case.)

Now (a) follows from [EGA IV], Proposition 21.10.4. An easy generalization of
[Fu], Lemma 1.7.1 to our setting proves (c). Using flatness of the base change, (d) follows
immediately and (e) is a consequence of the generalization of [Fu], Proposition 2.3 (d) to
noetherian schemes. If the extension K'/K is finite, then (b) follows from Proposition 12.
In general, the generic point of an irreducibe component of X ®, K’ is mapped to a generic
point of an irreducible component of X ([EGA IV], Corollaire 3.2). Then we can follow
the second part of the proof of Proposition 12 to get (b). O

3. Divisors on admissible formal schemes

Let K be a field with non-trivial non-archimedean complete absolute value | | and
let X be an admissible formal scheme over the valuation ring K°. We denote by X/ " the
corresponding formal analytic variety over K (1.10). The rigid analytic variety X*" over K
(1.10) will be denoted by X. It is called the generic fibre of X.

Remark 3.1. Since X is a locally ringed space, we have the notion of a Cartier divisor
on X (([EGA1V], §21.1). Using the same notation as in Definition 2.2, a Cartier divisor
is a global section of .Z{/(0f. As in Remark 2.3, we have a Cartier divisor div(s) for any
invertible meromorphic section s of an invertible sheaf % on X.

Definition 3.2. A horizontal cycle on X is a cycle on X. A vertical cycle on X is a
locally finite sum ) i, W where W ranges over all irreducible closed subsets of ¥ and
Aw € R. For the range of coefficients, we may use log|(K“)*| instead of R where K¢ is the
algebraic closure of K. A cycle on X is a sum of a horizontal and a vertical cycle on X.
The dimension of a horizontal cycle is the same as the dimension of the corresponding
cycle in X. We define the dimension of a vertical cycle as the dimension of the corresponding
closed subset of the special fibre minus 1.

Proposition 3.3. Let Y be a closed analytic subvariety of X with ideal sheaf ¢. For
an open subset U of X, let A (U):= ¢ (U)N\ O (U) where U is the generic fibre of %. Then
A is a coherent Oy-ideal and the corresponding closed subvariety Y of X is an admissible
formal scheme over K° with generic fibre Y. If % is a closed subvariety of X with generic
fibre Y and if % is an admissible formal scheme over K°, then % =Y.

Proof. Clearly, A is a sheaf of saturated ideals on X. Recall that an ideal 7/ of a K°-
algebra A is called saturated if and only if 4/7 has no K°-torsion. We have to prove that
A is a coherent (Oy-ideal. This is a local question, so we may assume X = SpfA for an
admissible K°-algebra A4. Since the ideal I:= ¢ (X) is saturated, [ is finitely generated
([BL3], Lemma 1.2) and A4/I is an admissible K°-algebra ([BL 3], Proposition 1.1). We
have to show that " is isomorphic to the O,-module associated to I (Appendix). It is
enough to prove that for any fe A4, the natural homomorphism

Q: 1, — /(U)mAm
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is an isomorphism where M., is the completion of M, and U is the generic fibre of
SpfA,;,. Since I, ;, may be viewed as a closed ideal of 4, (Appendix, Lemma 4), we have

Ly = 1Ay
This proves injectivity. On the other hand, we have

JU) = F(X)A,, [ '] = IA{f}[”_lj

for any me K°°. Hence, for any ae # (U) N Ay, there is ne N with n"a e [4,,. Since I, ;,
is the ideal of the closed subvariety SpfA/I of SpfA on the formal open subset SpfA4,
(Appendix, Lemma 4), we conclude that 4, /I, is an admissible K°-algebra ([BL 3],
Proposition 1.7). Therefore the ideal I, , of 4,,, is saturated and it follows that ae [, ,.
This proves surjectivity of @. Hence # is a coherent (¢)y-module. Moreover, it follows
from the above that Y is admissible. Clearly, the generic fibre of Y is Y.

To prove the last claim, we may assume X = SpfA4. Then % is given by a saturated
ideal I’ of A. Since the generic fibre of % is Y, we have I'[n~!] = #(X) where X is the
generic fibre of X. It follows easily I'= #"(X). O

To define multiplicities in the special fibre, we need the following statement ([Be1],
Proposition 2.4.4).

Lemma 3.4. Let of be a K-affinoid algebra. For any minimal prime ideal p of the
reduction </, there is a unique real function p on </ satisfying

@» pla)z0,

(i) p(aa)=|alp(a),

(i) p(a+b) < max{p(a), p(b)},

(iv) p(ab) = p(a)p (D),

V) pla) =laly, (cf1.3)
forall a,be of, a € K and

(vi) p={ae/" pla)<1}//"".

Remark 3.5. Let X =Sp./ and let W be an irreducible component of X = Spec.<Z.
Let n: X - X be the reduction map (1.6) and let W’ be a non-empty open affine subset
of W which intersects no other irreducible component of X. For a € .«Z, we define

la(W)|:=sup{la(®)]; xe X, n(x) e W'} .

Note that this equals the supremum semi-norm for the formal open affinoid subspace

7~ }(W"). Therefore the function a — |a(W)| satisfies (i)—(iii). Since W' is irreducible, (iv)
is a consequence of [BGR], Proposition 6.2.3/5. Obviously, (v) is true. To prove (vi), we
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have to show that {a € .«/°; |a(W)| <1} /.«/°° < p. Here p is the prime ideal corresponding
to W. So let ae .o/° with |a(W)| < 1. Since = maps the points of X onto the closed points
of X ([BGR], Theorem 7.1.5/4), the reduction @ of a vanishes on W’. This proves (vi).
We have shown the existence of p in the lemma. For uniqueness, see [Be1], p. 37.

Lemma 3.6. Let X =Sp.oZ and let W be an irreducible component of X. If a € o/ is
not a zero-divisor, then |a(W)| £ 0.

Proof. Let W’ be a non-empty open affine subset of W not intersecting any other
irreducible component of X. Then =z~ (W) is a formal open affinoid subspace of X and
its supremum semi-norm is zero exactly on nilpotent elements ((BGR], Proposition 6.2.1/4).
Using Remark 5, we see that |a(W)| = 0 if and only if the restriction of a to n~ *(W’) is
nilpotent. But this restriction can not be a zero divisor ((BGR], Corollary 7.3.2/6). This
proves the claim. 0O

3.7. Let X be an admissible formal scheme over K° and let D be a Cartier divisor
on X. We are going to define a Weil divisor cyc(D) associated to D which may be viewed
as the intersection product of D with the horizontal cyc(X). The horizontal part of cyc (D)
is the Weil divisor on X associated to D|, (cf. 2.5). It remains to define the vertical part
cyc, (D) of cyc(D).

3.8. Assume that K is algebraically closed. First, we assume that the generic fibre
X is an irreducible rigid analytic variety and that the special fibre X is reduced. Then X is
isomorphic to the formal scheme associated to the distinguished formal analytic X/ 2"
(Proposition 1.11). Let W be an irreducible component of X. Let % be a formal affine
open subset of X containing the generic point of W such that D is given on % by a/b for
elements a, b of O (%) which are not zero-divisors. There is a K-affinoid algebra .o/ such
that the generic fibre of % is isomorphic to Sp.«Z and such that Oy (%) =~ .«/°. In Remark
5, we have introduced a multiplicative semi-norm associated to the irreducible component
WU of Spec.oZ. We define the order of D in W by

ord(D, W):=log|b(Wna)| —logla(WnuU)| .

By Lemma 6, this is a real number. Then the vertical part of the Weil divisor associated
to D is

cyc, (D)= ord (D, W)W
w
where W is ranging over all irreducible components of X.
Lemma 3.9. The order of D in W does not depend on the choice of U and a/b.
Proof. Since the semi-norm is multiplicative and bounded by the supremum semi-
norm, we conclude |y (Wn%)| =1 for any unit y in Oy (%) = o/ °. Therefore the order does

not depend on the choice of a/b.

To prove independence of %, we may assume that %’ is a formal affine open subset
of % containing the generic point of W. By the above, it is enough to show
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la(Wna)| =la(Wnu")|.
This is an immediate consequence of Remark 5. O

Definition 3.10. Let D be a Cartier divisor on the admissible formal scheme X over
K°. First, we assume that K is algebraically closed and that the generic fibre X is irreducible
and reduced. By [BGR], Theorem 6.4.3/1, and Proposition 1.11, X':=(X/ ")/ 75h g an
admissible formal scheme with generic fibre X and reduced special fibre. Moreover, we
have a canonical morphism i: X' — X. Using 3.8 and 1.10, we define

cye, (D)= i, (cye, (i*D)).

Now we assume no longer that X is irreducible and reduced. Let X =) m; X; be the de-
composition into prime cycles. Using Proposition 3, let J

CYCU(D)== Z ijyCU(D|Xj) .
J

Finally, we skip the assumption that K is algebraically closed. Let X* be the base change
of X to the valuation ring of the completion K of the algebraic closure K“ of K. Then
the base change of D gives a Cartier divisor D* on X Clearly, cyc,(D®) is Gal(K“/K)
invariant. Hence, there is a unique cycle cyc,(D) on X which is mapped by base change
to cyc, (D). The cycle cyc(D):=cyc(D|y) + cyc,(D) is called the Weil divisor associated
to the Cartier divisor D.

The vertical part of cyc(D) may be computed directly over K if X is geometrically
reduced (cf. Lemma 3.21) or if K is stable (cf. Lemma 5.8).

Remark 3.11. Next we consider the effect of base change. Let K’/ K be a field ex-
tension and let | | be a complete absolute value of K’ extending the given one on K. Under
base change, a horizontal cycle on X is mapped to a horizontal cycle on ¥:=X ®,. K"°.
Moreover, we have

(X &g (K))” = X @K'

and so we have a natural base change of vertical cycles as well. If J is a cycle on X, we
denote the base change of 3 by J3".

Lemma 3.12. The homomorphism 3+ 3’ is one-to-one. If D is a Cartier divisor on
X, then

cye(D @ (K')?) = cye(D)
where D @y (K')° is the Cartier-divisor on X' obtained from D by base change.

Proof. The first claim is obvious. For the horizontal parts, the second claim follows
from Proposition 2.13. Moreover, it is clear for vertical parts if K'= K“. Together with the
first claim, this shows that we may assume K, K’ algebraically closed. By linearity and flatness

of the base change (cf. proof of Proposition 2.13), we may assume that the generic fibre of
X is irreducible and reduced. Then X/~ 2" is distinguished ((BGR], Theorem 6.4.3/1).
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Let W be an irreducible component of X and let % be a formal affine open subset of X
containing the generic point of W. Using additivity, we may assume that D is given on %
by aeOy(¥). Note that W' =W ®zK  is an irreducible component of ¥’ and
U'=U @y K'° contains the generic point of W’

We have %/~ * @, K'= %'/ ~*" and
(1) (') =) = @' )" @K’

by [Bo1], Satz 6.4. Moreover, an irreducible component of (%)’ ~*")" is obtained from
an irreducible component of (7~ 2")~ by base change. So it is enough to show that

2 la(V)| = la(V")]

for V=Wn9% and V'=W'~4%'. Passing to a formal affinoid subdomain of %' ™", we
may assume that V equals the special fibre of %/~ ", Using Remark 5, we see that |- (V)]
is the supremum semi-norm on %’ 2", Moreover, V' is the special fibre of (%')/ ~*" and
so |-(V")| is the supremum semi-norm of (#’)”~*". Using (1), we see that |a(V)| =1 if
and only if |a(V")| = 1. Since the values of the supremum semi-norm on .o/ are contained
in | K|, we get (2). O

Definition 3.13. A morphism ¢ : X — X’ of admissible formal schemes over K° is
called proper if and only if the induced morphisms between the generic fibres and between
the special fibres are both proper.

Remark 3.14. Let ¢ : X > X’ be a morphism of quasi-compact admissible formal
schemes. Under the hypothesis that the complete valuation on K is discrete, it is shown
in [Lu] that ¢ is proper if and only if at least one of the induced morphisms ¢**: X — X"
(generlc fibres) and ¢ : ¥ - X’ (special fibres) is proper. The easier part is to show that if

" is proper then ¢ is proper. Using the results of [BL3] and [BL 4], the same proof as
for discrete valuations shows that this part holds also if the complete non-archimedean
absolute value on K is not discrete. In [Lii], it is conjectured that also the converse im-
plication which is the difficult part is true in general.

3.15. If ¢ is proper, then we have push-forward maps for horizontal cycles and for
vertical cycles. If J is a cycle on X with horizontal part Z and vertical part J3,, then the
push-forward of J3 is defined by

?4(3) = 03" (Z) + ¢,(3,) -

3.16. Now assume that ¢ : X — X' is a flat morphism of admissible formal schemes
over K°, i.e. if locally the map looks like Spf.e/ — Spf.eZ’, then .o/ is a flat .o/"-algebra.
Then ¢ and ¢ are flat and we can define a pull-back map ¢* similarly as above.

The next 3 lemmata are needed for the proof of the projection formula in section 4.
A field is called stable if the degree of a finite extension is the sum of the products of
residue degrees and ramification indices (cf. [BGR], 3.6).
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Lemma 3.17. Assume that K is a complete stable field and let </ be a reduced K-
affinoid algebra such that </ is an integral domain. Then </ is an integral domain and its
field of fractions Q(f) is stable with respect to the absolute value induced by the supremum
norm.

Proof. Using [BGR], Proposition 6.2.3/5, it follows that .«7 is an integral domain
and the supremum norm induces an absolute value | | , on Q(.27). By noetherian normali-
zation ([BGR], Corollary 6.1.2/2), there is a finite monomorphism ¢ : K<{x,, ..., x;> — /.
Let Q be the field of fractions of K<{x, ..., x;». On Q, the Gauss norm yields a canonical
absolute value | |,. Using [BGR], Proposition 6.2.2/2, we see that the supremum norm
on o7 is the restriction of the spectral norm ([BGR], p. 44, p. 134) of the extension Q (/) / Q.
As both the spectral norm and | |, are faithful Q-algebra norms on Q(</), they are the
same. Therefore the spectral norm is an absolute value and hence it is the only extension
of the Gauss norm to an absolute value on Q (/) ([BGR], 3.3.3).

Let L/Q(</) be a finite field extension and let {| |;; j=1,...,n} be the absolute
values on L extending | |,. By e; (resp. ¢;), we denote the ramification index of | |; over
| |, (resp. over | |,). Similarly, we have the residue degree f; (resp. f;). Note that Q is
stable [BGR], Theorem 5.3.2 /1. By [BGR], Proposition 3.6.2/6, we have

n

S e/ f/=[L:0].

j:

If e (resp. /) is the ramification index (resp. residue degree) of | |, over | |,, then we have
ej = ee; and f; = ff.. Again by stability of O, we have ef = [Q (/) : Q]. Finally, this gives

n

Y e fi=[L:Q(A)].

j =
This proves the stability of Q (/) ([BGR], Proposition 3.6.2/6). O

The next lemma is included in [Bel], Proposition 2.4.4. For convenience of the
reader, we give a proof here.

Lemma 3.18. Let .o/ be a K-affinoid algebra which is an integral domain. If W is an
irreducible component of Spec.Z, then |- (W)| extends uniquely to an absolute value | |, on
the field of fractions Q (/). Let Spfo/’ be a non-empty formal open affinoid subspace of
Spf.of such that Spec.o/’ intersects no other irreducible component of Spec.Z than W. Then
o' is an integral domain and the supremum semi-norm on </’ induces an absolute value on
Q (") whose restriction to the dense subfield Q (o) equals | |y . If the value group of K is
divisible, then K(W) is isomorphic to the residue field of | |,

Proof. Lemma 4 and Lemma 6 show that |- ()| extends to an absolute value | |,
of Q(<«/). By [BGR], Corollary 7.3.2/10, ./’ is reduced. As the reduction Spec;// is
irreducible, we conclude similarly as in Lemma 17 that ./’ is an integral domain. The
supremum semi-norm | |, of .«/" extends uniquely to an absolute value on O (/") ((BGR],
Proposition 6.2.3/5). As .o/’ is a flat .oZ-algebra ((BGR], Corollary 7.3.2/6), the canonical
homomorphism .« — .o/’ is injective. It follows from Remark 5 that | |, extends |- (W)].
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There is fe./° such that {}7:# 0} is a dense open subset of SpecJ As O(/) is dense
in Q(o/{ f~1)), it follows that Q(.</) is dense in Q(.<7").

To prove that the residue field k of | |, is isomorphic to K(W), we may assume that
of = .o/, i.e. Spec.os/ = W. This follows from the density of Q(.<7) in Q(=/'). We have a
natural monomorphism K (W) — k. Let a € k\{0}. There is a,be .o/, |aly = |b|y, such
that o is the residue class of a/b. If the value group of K is divisible, then we may assume
|aly = |b|, = 1. This proves surjectivity of K(W) —» k. O

Lemma 3.19. Let ¢ : .o/ — B be a finite monomorphism of K-affinoid algebras. If <7
is an integral domain, then Vi— |- (V)| is a one-to-one correspondence between irreducible
components of Spec# mapping onto Spec.o/ and multiplicative semi-norms on % extending
the supremum semi-norm of /. (Multiplicative means that (iv) of Lemma 3.4 is fulfilled.)

Proof. Note that the reduction ¢ is finite (Theorem 1.9). By Lemma 4 and Remark
5,1 (V)| is a multiplicative semi-norm on # for any irreducible component V¥ of Spec %
and ¥ is uniquely determined by |- (¥)|. If ¥ maps onto Spec.<Z, then it’s an immediate
consequence of uniqueness in Lemma 4 that |- (V)| extends the supremum semi-norm | |,
of .of.

It remains to check that any multiplicative semi-norm p on % extending | | , has the
form |- (V)| for V as above. First, we assume that .o/ is the Tate algebra K{x,,..., x,;>
and ¢ is torsion-free. Then we may assume that % is reduced. Let Q be the field of fractions
of /. Then #,:=%# ®, 0 is a reduced finite dimensional Q-algebra and # < %,. By
[BGR], Proposition 6.2.2/2, the spectral norm of %,/Q ([BGR], Definition 3.2.2/1)
restricts to the supremum semi-norm of 4. By Dedekind’s Lemma ([BGR], Proposition
3.1.4/1), A, is a direct product of finitely many finite field extensions L; of Q. It follows
easily from [BGR], 3.2.2 that any multiplicative semi-norm on &% extending | |, is induced
by an absolute value on some L;. By [BGR], Theorem 3.2.2/2, Proposition 3.3.3/1, the
spectral norm of b € %, equals

|b]y, = max max 1b;1;
i i

where b, is the component of b in L; and | |; ranges over all absolute values of L, extending
the Gauss norm. As ¢ is torsion-free, any irreducible component of Spec# maps onto
Spec.<Z. Otherwise, there is de .7\ {0} and 5 e %\ {0} such that d is zero on the image of
this component and 5 is zero outside of this component. In particular, we have |ab|, < 1
and |a|_, =|b|4 =1 which is impossible ((BGR], Proposition 6.2.2/2). So any irreducible
component V of Spec# induces a multiplicative semi-norm | |, on A, extending the
Gauss norm. By [Be1], Proposition 2.4.4, we have |b|,, = max, |b|,,. Using the approxi-
mation theorem ([BGR], 3.3.2), it follows that every | |; is induced by some ||,. In
particular, p is of the form |- (V)| for some irreducible component ¥ of Spec . This proves
the claim for torsion-free ¢ and .o/ = K<{x,, ..., x;).

Next, we assume only that o7 is a Tate-algebra. Let I be the ideal of .o/-torsion in
B Let #':==%/1. Then ¢': of - A’ is a finite torsion-free monomorphism. As p is multi-
plicative, it induces a multiplicative semi-norm p’ on #". By the consideration above, there
is an irreducible component V' of Spec 4’ such that p’ = |- (V') |. By dimensionality reasons,



Gubler, Local heighs of subvarieties 81

V' is_mapped onto an irreducible component F} under the finite morphism
Spec#/I — SpecZ. Again by uniqueness in Lemma 4, we conclude p = |- (V)].

Finally, we prove the claim in general. By noetherian normalization ((BGR], Co-
rollary 6.1.2/2), there is a finite monomorphism ¢ : K{x, ..., x,> — o/ As we have seen
above, there is a component ¥ of Spec# mapping onto SpecK [x,,...,x,] such that
p=1-(V)|. Obviously, ¥ maps onto Spec.<Z. This proves the claim in general. O

By noetherian normalization, an affinoid variety is a finite covering of a unit ball.
We can use this morphism to reduce some problems to the zero-dimensional situation.
The next corollary describes the resulting zero-dimensional variety and makes it clear why
it is useful in the study of Weil divisors.

Corollary 3.20. Let X be an irreducible and reduced K-affinoid variety. We denote
the field of fractions of K<{x,, ..., x;» by Q. Suppose that ¢ : X — Sp K{X) is a finite sur-
Jjective morphism. For an irreducible component Vof X, let K/(/?)V be the completion of K(X)
with respect to | |, (cf. Lemma 18). Then

Ja7®K<:.(>Q = HK/()?)V
v

where V is ranging over all irreducible components of X.

Proof. Let .o/ be the K-affinoid algebra of X. Note that K(X) = .o/ ®g, ., Q. We
have seen in the proof of Lemma 19 that there is a one-to-one correspondence between
irreducible components of Spec.oZ and absolute values on K(X) extending the Gauss norm
of Q. From valuation theory, we know that K(X) ®, O is isomorphic to the product of

the K/(\X)V. This proves the claim. 0O

Lemma 3.21. Let X be an admissible formal affine scheme over K° with geometrically
reduced special fibre X. Then there is a distinguished K-affinoid algebra </ with X = Spf.oZ°.
Suppose that a is not a zero-divisor in .</°. Then the multiplicity of cyc(div(a)) in an irre-
ducible component W of ¥ equals —log|a(W)].

Proof. 1t follows from Proposition 1.11 that X is the formal scheme Spf.e/° for a
distinguished K-affinoid algebra .«Z. In particular, .o7 is reduced. In fact, .o/ is geometrically

reduced since the same argument shows that .of':= .o/ ®KI/(\“ is a distinguished ﬁ—algebra
and (/') = ./° @ (K*)°. Here we have used that the special fibre of X is geometrically
reduced. Let W' be an irreducible component of W&y K°. By Lemma 4 and Remark 5,
we have |a(W')| =|a(W)]|. So we may assume K algebraically closed.

Let U be a non-empty open affine subset of W not intersecting any other component
of X. We denote the corresponding subdomain of Sp.«Z by U = Sp 4. Then 4 is an integral
domain (as in Lemma 17). There is a unique irreducible component Y of Sp.eZ containing
U. Let m be the multiplicity of the Weil divisor associated to div(a) in W. Then Y is the
only irreducible component of Sp.o/ contributing to m. Note that U is a formal affinoid
subdomain of Y. We conclude that there is a unique irreducible component ¥ of ¥ lying
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over W. Then U is a dense open subset of V. By Remark 5, we have [a(V)| = |a(W)].
Since m = —logla(V)|, we get the claim. O

4. Intersection with divisors

Let K be a field with non-trivial non-archimedean complete absolute value | | and
let X be an admissible formal scheme over K° with generic fibre X as in section 3.

Let D be a Cartier divisor on X and let Y be a horizontal prime cycle of dimension
d. We assume that D |y intersects Y properly. By Proposition 3.3, there is a canonical closed
formal subscheme Y of X with generic fibre Y. Then D|y is a Cartier divisor on Y and its
associated Weil divisor (Definition 3.10) may be viewed as a cycle on X.

Definition 4.1. The intersection product D.Y of D and Y is the cycle on X induced
by cyc(Dly).

Remark 4.2. Note that D.Y is a d — 1 dimensional cycle on X. Now we assume that
Y is a vertical prime cycle on X of dimension d. If the support of D does not contain Y,
this is called a proper intersection, then the restriction of D to Y is a well-defined Cartier
divisor on Y and we define D.Y as the d — 1 dimensional cycle on X induced by cyc(D|y).

Let Z(X) be the set of cycles on X. It is a group with respect to addition. For
X=X ®g (K9°, we may consider Z(X) as a subgroup of Z(X%) (Lemma 3.12). Let R®
be the subgroup of rational divisors on X¢. We define

CH(X,0):=Z(X)/(R‘nZ(X)).

If the vertical prime cycle Y is contained in the support of D, then we cannot define D.Y
as a cycle. For our purposes, it is enough to define it as a class in CH(X,v): Let O(D) be
the invertible sheaf on X induced by D. Then we define D.Y as the class in CH(X,v)
induced by

c;(0(D)]y) e CH'(Y).

Let 3 be a cycle on X. We say that D intersects 3 properly in the generic fibre if the sup-
port of D|y intersects the horizontal part of J properly in X. If the intersection of the
support of D with the vertical part of J is also proper, then we say that D intersects J3

properly.

Definition 4.3. Let 3 be a cycle on X intersecting the Cartier divisor D properly in
the generic fibre. By linearity, we extend the above definitions to get a class D.3 € CH(X,v)
called the intersection product of D and J. If D intersects 3 properly, then D.J3 is a
well-defined cycle.

Proposition 4.4. Let D, D' be Cartier divisors on X and let 3, 3’ be cycles on X.
(1) If D and D' intersect 3 properly in the generic fibre X, then

(D+D").3=D.3+D.3eCHX,v).
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(1) If D intersects 3 and 3’ properly in the generic fibre X, then
D.(3+3)=D.3+D.3'eCH(X,v).
If the intersections are proper, then we have identities of cycles.

Proof. The first claim follows from the additivity of ord (D, W) in D and the second
claim is nearly by definition. O

Next we have the projection formula:

Proposition 4.5. Let ¢ : X' - X be a proper morphism of admissible formal schemes
over K°. Assume that D is a Cartier divisor on X and let 3’ be a cycle on X'. If ¢*(D)
intersects 3’ properly in the generic fibre, then

0. (0*D.3)=D.p, 3 € CH(X,v).
If ©* (D) intersects 3’ properly, then we have an identity of cycles.

Proof. 1t is enough to check that for a prime cycle 3" If 3’ is vertical, then the
claim follows from the projection formula for varieties over K. So we may assume that
3’ is horizontal. Moreover, we may assume that the generic fibre X' of X’ is an irreducible
reduced rigid analytic variety with 3'= cyc(X"). By the proper mapping theorem ([Ki1],
Satz 4.1), the image of X' is a closed subvariety of X, so we may assume X = ¢*"(X’). If
dim X’ > dim X, then both sides of the projection formula are zero. So let us assume that
X and X' are equi-dimensional. By Lemma 3.12 and Proposition 2.13, it is enough to
prove the claim for K algebraically closed. So under the hypothesis above, we have to prove

(1) @, (cyc(9p*D)) = D.¢, (3.

The horizontal parts of both sides agree by Proposition 2.10. It remains to show that the
vertical parts are equal.

First we assume that the special fibres of X and X’ are reduced. By Proposition 1.11,
we have

=@ o @ ey

and similarly for X". The direct image theorem ([Ki1], Theorem 3.3) tells us that ¢3" Oy
is a coherent sheaf on X. We can form the rigid analytic variety X":= Sp ¢3" Oy, which is
finite over X. Over a K-affinoid admissible open subspace U of X, it is given by
Sp0y.((¢p*™)~1U). Then ¢* = "o f" with natural morphisms f": X' — X" and f": X" — X.
Moreover, f’ is a proper surjective morphism with connected fibres and f” is finite and
surjective (for details, see [BGR], 9.6.3). This canonical decomposition of ¢*" is called
the Stein factorization of ¢. Using the formal analytic structure of X, we get a natural

formal analytic structure on X". Let X" be the corresponding formal scheme over K°.

By construction, f” is continuous with respect to the formal analytic topologies and
it is easy to see that the same is true for f”. Therefore /" and /"' may be viewed as morphisms
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of formal analytic varieties over K. The supremum norm of a regular function g on an
admissible open part U of X" equals the supremum norm of g o /" on '~ *(U). Therefore
we have f, 0Oy = (y... Note that X" is a reduced rigid analytic variety. Since K is alge-
braically closed, it follows from [BGR], Theorem 6.4.3/1, that X" is distinguished. By
Proposition 1.11, X” is an admissible formal scheme with reduced special fibre. Let
@' == (f) 7" and ¢":=(f")/ " be the corresponding morphisms of formal schemes.
It follows that

2 X" = Spec ¢, Oz -

In particular, ¢ = (7 o ¢’ is the Stein factorization of ¢. We conclude that (7 is a proper

surjective morphism with connected fibres and that ¢” is finite. By Definition 3.13, ¢’ is
a proper morphism of admissible formal schemes.

First we prove (1) for ¢’. Outside the inverse image of a lower dimensional closed
subset S of X, q? is finite. Here we have used that X, X’, X" and all irreducible components
of the reductions have the same dimension. From (2) it follows that ¢’ is an isomorphism
outside of (¢)”'(S). Let n: X — X be the reduction map. By [BGR], Corollary 6.4.2/2,
we conclude that ¢’ induces an isomorphism

P XN\@)THS) - X\ (@)THS)

For dimensionality reasons, the components of ¥’ lying over S are mapped by a; to 0.
If we replace ¢’ by ', then the vertical parts of both sides of (1) will not change up to
passing to closures of components. But for an isomorphism, (1) is clearly satisfied. This
proves (1) for ¢".

Next we prove (1) for ¢"”. Together with the claim for ¢’, formula (1) for ¢ = ¢ " c ¢’
will follow easily. The claim for ¢” is an immediate consequence of the following local
statement:

Let f: X' — X be a finite surjective morphism of irreducible K-affinoid varieties with
reduced special fibres and let y be a non-zero regular function on X. If ¢ : X’ — X is the
corresponding morphism of formal schemes, then we have

(1) 0, (cyc(p*div(y))) = div(p). @, cyc(X").

Note that we still assume that K is algebraically closed. We have to check that the multi-
plicities of both sides of (1) in an irreducible component W of X agree. Passing to formal
subdomains, we may assume that W= X. The vertical part of the Weil divisor associated
to div(y) equals

—log|y(W)|W.

On the other hand, the vertical part of the Weil divisor associated to div(¢*7y) is equal to

—logly(M)| XV
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where V is ranging over all irreducible components of X’. To prove (1), it is enough to
show that

(©) [KX):KX)]=Y[RV):R(W)].

By Lemma 3.19, there is a one-to-one correspondence between irreducible components of
¥’ and absolute values on K (X”) extending the supremum norm on X. As K is algebraically
closed, its value group is divisible. It follows from Lemma 3.18 that [K (V) : K(W)] equals
the residue degree of | |,, over | |,,. Moreover, all ramification degrees are 1. Now (3)
follows from the stability of K(X) (Lemma 3.17) and [BGR], Proposition 3.6.2/6.

We have proved (1) for admissible formal schemes with reduced special fibres. Now
let us consider the general case. By assumption, X and X’ are reduced. As K is algebraically
closed, X/~ and (X’)/ " are distinguished ((BGR], Theorem 6.4.3/1). By Proposition
111, W= (X2 7 and #/:= (X7 )" 7" are admissible formal schemes over K°
with reduced special fibres. Moreover, we have a natural commutative diagram

@/ l—,) %I

b
where i, i’ are finite morphisms ((BGR], Corollary 6.4.1/5) and v = (¢ ~*)” "*". Note
that y equals ¢ on generic fibres. Since i 9 is proper, we conclude that ¢ is proper, i.e.

p is proper. Let & (resp. Z ') be the horizontal cycle on X (resp. X') associated to X (resp.
X'). By definition, we have

D.%=i,(i*D.%)
and
©*D.Z" =i, (p*i*D.Z").
Using (1) for y, we get
0 (@*D.Z") =i, (*D.p, Z').

Note that p, 2" is a multiple n of 2. We conclude that

0. (@*D.Z")=nD.Z=D.9 Z'.
This proves (1). O

5. Commutativity
Let K be a field with a non-trivial non-archimedean complete absolute value | |.
5.1. Consider a Cartier divisor D on the admissible formal scheme X over K° with

reduced special fibre. Let W be an irreducible component of X. We are going to construct
a canonical Cartier divisor on W equivalent to the divisor of any non-zero meromorphic
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section of O (D)|y. Let % be a formal affine open subset of X such that D is given on %
by y=a/b for elements a, b of Ox(%) which are not zero-divisors. We suppose that
U~W=0. Let W’ be a non-empty affine open subscheme of % intersecting no other irre-
ducible component of % than W. Since ¥/ 2" is distinguished (Proposition 1.11), there is
ay € K* with

—log|oy | =log sup [b(x)|—log sup |a(x)]|
n(x)eWw’ n(x)eWw’

where 7: X — X is the reduction map. Here we have used that 7~ (W) is a formal open
affinoid subspace of X/~ 2" whose supremum semi-norm p is multiplicative (Remark 3.5).
Moreover p(y) does not depend on the choice of y and p(y) = |ay,|. Therefore y /oy, may
be reduced to a well-defined non-zero rational function on . Obviously, the latter extends
uniquely to a rational function f;, on W. The formal scheme X is covered by subsets % as
above. Therefore the corresponding reductions % cover the scheme X. We get a Cartier
divisor Dy, on W, given by f,, on %W, such that ¢(D,,) = O(D)|,. To prove this, let
U, U, be formal affine open subsets of ¥ with %, ~n W=+ 0 and %, "W + §. Moreover,
we assume that D is given on %, by y; (i=1,2). Let W’ be a non-empty affine open subset
of ¥ contained in %, n%,. Then /‘%1 [ fu,equals (y,/y,)~ on W' But(y,/y,)~ is the transition
function of ©(D)|, on %,n%,W. This shows that D, is a Cartier divisor with
0(Dy) = O (D).

5.2. Now we assume no longer that the special fibre of X is reduced. Let D and D’
be Cartier divisors on the admissible formal scheme X over K° which intersect properly
in the generic fibre. If D and D’ does not intersect properly, then the vertical part of
D.cyc(D’) is only an equivalence class. In the following, we define a cycle D.D’ on X

which is a canonical representative of D.cyc(D’). Let K% be the completion of the algebraic

closure of K and let X*:=X ®,. (1/{\”)0. We may assume that the generic fibre of X“ is irre-
ducible and reduced, otherwise we proceed by linearity. Then X¢ is an admissible formal
scheme over (I/<\“)O and the formal scheme X’ associated to (X%)/ ~" is an admissible formal
scheme over (I/<\“)O with reduced special fibre (Proposition 1.11). Using the canonical
morphism i: X' — X“ and base change, we get Cartier divisors D* and (D') on X’ induced
by D and D', respectively. First, we define the cycle D (D')* on X'. Its horizontal part is
defined as usual. By 5.1, D*. W’ may be defined as a canonical Weil divisor on W' for any
irreducible component W' of X' It is the Weil divisor associated to D{,.. By this proce-
dure and using linearity, we can define D*.(D“)" as a cycle on X". Then i, (D*.(D“Y) is
defined over K equal to the base change of a unique cycle D.D’ on X. This is clear for
the horizontal part (Proposition 2.13) and is a consequence of the invariance of the vertical

part of D“.(D")* under Gal(K*/K).

Obviously, the class of D. D’ in CH(X,v) equals D.cyc(D’). If the special fibre of X
is geometrically reduced, it is seen as in Lemma 3.21 that the vertical part of D.D’ is
equal to

Y. m(D',W)cye(Dy)

where W is ranging over all irreducible components of ¥ and m (D', W) is the multiplicity
of cyc(D") in W.
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Lemma 5.3. Let of be a K-affinoid algebra and let ¢ : K{(x{,...,x,) > o be a
homomorphism. We denote the field of fractions of K{x,, ..., x,> by Q and its completion

with respect to the Gauss norm by Q. Then of':= of ®K<x> O is a O-affinoid algebra and for
any ideal I of <, we have

(A1) @k, @ = '|(LL').
If Z is a prime cycle on Sp.o/ with induced reduced structure, then Z ®K<X>Q is a closed
subvariety of Sp.o/’ with cycle Z'. By linearity, we extend the map Z — Z' to all horizontal
cycles. Then the kernel of the base change consists of those cycles which have no component
mapping Zariski densly into B" by the morphism corresponding to ¢.
Proof. Adding some more variables x, ., ..., x,,, we get a strict epimorphism
P:iK{X |y Xy o A
extending ¢. By [BGR], Corollary 6.1.1/8, we get

KXy, o X0 Oknnn oy @ = OXX 15 0005 X

.....

By [BGR], Proposition 2.1.8/6, we get
(KX s X0 [ KT 9) @iy @ = O X1y o5 Xy [ (Ker (1)) -
This proves the first two claims.
Let 2 be a prime ideal of .«Z. Then
(A P) B tx.oonr ©
is non-zero if and only if K<{x, ..., x,» = &7/ 2 is injective. This proves the last claim. 0O
Lemma 5.4. Let o/ be a reduced K-affinoid algebra and let
Q:Kxy, oo, x,) &> A

be a homomorphism such that all minimal primes of Spec.oZ are mapped by ¢~ to the zero
ideal in K[x,, ..., x,]. Let Q be the field of fractions of K{xy, ..., x,>. Then we have

A Qg0 0° = (A By, 0)°

and
A~ ®f([x] Q = (&{ ®K<x> Q)N .
Moreover of ®K<X>Q is reduced.

Proof. Let W be an irreducible component of Spec.Z and let | |,, be the corre-
sponding multiplicative semi-norm on .¢Z. Since the prime ideal in .o/ corresponding to W
is mapped to the zero ideal in K[x,, ..., x,], it follows from uniqueness in Lemma 3.4
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that the composition of | |, and ¢ equals the Gauss norm. Note that the supremum
semi-norm | |, on .o is the maximum of all | |, with W ranging over the irreducible com-
ponents of Spec.Z (use Corollary 3.20 or [Be1], Proposition 2.4.4). Therefore ¢ is an
isometry with respect to the Gauss norm | | on K{x) and | |, on /. Moreover, we have

lo(faly, =1fllaly
for any fe K{(x) and a e .«/.

We have a natural homomorphism
W1 Qo 0 = (A By 0)°
Using the formula above, it follows that the induced homomorphism
¥ Qg O = (A Bgny Q)

is one-to-one. As the reduction of &/@K@Q is the same as the one of .o/ ®g,, 0, it is
clear that the map is surjective as well. This proves the second claim.

Note that .7° ®- o @° 1s the completion of .o7° ®y- ., O with respect to the tensor
norm. Then v is an isometry of complete normed Q°-algebras. Clearly, the image of
A Qg3 Q7 I (A Qo @)° 1s dense. By definition of completion, y is an isomorphism.

Obviously, the tensor norm on .7 @ o @ 1s power multiplicative. Therefore it is the
supremum norm and .o/ ®K<X>Q is reduced ([BGR], Proposition 6.2.1/4). O

Lemma 5.5. Let ¢ : X' > X be a proper morphism of admissible formal schemes over
K° and let D,, D, be Cartier divisors on X intersecting properly in the generic fibre. We
assume that the restriction of ¢ to the generic fibre is a surjective morphism of irreducible
rigid analytic varieties over K of the same dimension. If the following statement (b) is true,
then (a) is also true:

(a) D,.D,=D,.D;
(b) ¢*Dy.¢*D, = ¢*D,.¢*D,.
Proof. By projection formula, we get
¢ (0*D,.¢*D,.cye(X')) = Dy.D,.¢,cye(X)
=[X":X]D,.D,.cyc(X)e CH(X,v)
and similarly

@, (0*D,.cyc(¢p*D,)) = D,.D;. ¢, cyc(X')
=[X":X]D,.D,.cyc(X)e CH(X,v).

The construction of Dy, in 5.1 is clearly compatible with pull-back, i.e. if W' is an irre-
ducible component of X’ mapping onto the irreducible component W of X, then we have
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¢*Dy, = Dy,.. Then we easily deduce that the projection formulas used above yield an
equality of cycles and we get

0 (@*D.@*D,) =[X": X]D,.D,
and

QD*(QD*Dz-(P*DJ =[X":X]1D,.D,.
This proves the claim. O

Lemma 5.6. Let X = Spf A4 be an admissible formal affine scheme over K° with generic
fibre X. Suppose that ¢ : X - SpfK°{xy, ..., X, is @ morphism such that ¢ maps the irre-
ducible components of % densely into Spec K [X]. We denote the field of fractions of K{(X)
by Q and the completion of Q with respect to the Gauss norm by Q. As usual, we denote the
generic fibres of X, X' by X and X', respectively.

(a) X=X® o @° is an admissible formal scheme over Q° with generic fibre
X®K<x> Q

(b) In the notation of Lemma 3, we have cyc(X) = cyc(X').

(c) Let Sp# be an irreducible component of X. Then #':= A ®K<X>Q is a non-zero
reduced Q-affinoid algebra.

(d) We have %' =~ % g O. If V is an irreducible component of Spec, then
V=V Qg O is an irreducible component of Spec% This gives a one-to-one correspon-
dence between irreducible components of Spec# and irreducible components of Spec%'.

(e) If be B, then |b(V)|=|b(V")|.
(f) The fields of rational functions on V and V' are isomorphic.

(2) If W is an irreducible component of X, then W': =W Rz O is an irreducible com-
ponent of X'. The map W—-w’ gives_ also a one-to-one correspondence between irreducible
components of X and X'. Moreover, K(W) is isomorphic to Q(W").

Proof. By adding some more variables x,_ , ..., x,,, we may assume that 4 is the
quotient of K°<{x, ..., x,,» by the ideal J. From Lemma 4 and the proof of Lemma 3,
we get

Ko(xy, o0 x, >®K<x1 Xd>QO~Q X gigs s X)) -

Hence A=A @y -, @7 1s the quotient of 0° (xd+ 1> -5 X, » by the ideal generated by J.
To prove (a), it remains to show that 4’ has no Q° torswn Equivalently, we may prove
that 4" has no K°-torsion.

We claim that 4’ is a flat A-algebra. This is clear modulo any finitely generated ideal
I contained in K°°. Similarly as in the proof of Proposition 2.13, it follows that 4" is flat
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over A. In particular, A’ has no K°-torsion. This proves (a). Moreover, the .&7:= 4 ®. K-
algebra .of ®K<X> 0 is flat and so (b) follows similarly as the last statement in 2.8.

By Theorem 1.9 and 1.10, all irreducible components of Spec# are mapped densely
into Spec K [x]. Then (c) and the first claim of (d) are consequences of Lemmata 3 and
4. Moreover, 4’ is a torsion-free K [x]-algebra. Note that %’ is the localization of % in
the zero-ideal of K [x]. Hence % may be viewed as a subalgebra of %". By clearing denomina-
tors, it is clear that ¥’ is a prime cycle on Spec#’ with O (V') =~ K (V). Note that 4’ is a
flat #-algebra. Therefore V' is an irreducible component of Spec#’ and any irreducible
component has this form. This proves (d) and (f). Similarly, we prove (g). Finally, (e)
follows easily from uniqueness in Lemma 3.4 and Remark 3.5. O

To compute the multiplicity of a Weil divisor in a component of the special fibre, it

is sometimes inconvenient to do first base change to ke (cf. 3.10). The next lemma gives
a direct formula if the valued field K is stable.

Lemma 5.7. Assume that the complete non-archimedean absolute value || on K is
stable. Let a be an element of the admissible K°-algebra A which is not a zero-divisor. Let
(X));=1....., be the irreducible components of the K-affinoid variety X:=Sp A Q- K and let
m; be the multiplicity of X in X;. We consider the Weil divisor on Spf A associatNed to div(a).
Then its multiplicity in the irreducible component W of the special fibre Spec A is equal to

— ¥ m; Y e(MIRW;): R(W)]logla(V))|

=1

where V; is ranging over all irreducible components of )?J lying over W with respect to the
canonical finite morphism X; — Spec A and where e(V)) is the index of |K*| in the value

group of the absolute value | |y, on K(X;). The ramification index e(V;) is always finite.

Proof. 1t follows from Theorem 1.9 and 1.10 that fl — Spec A is finite and that X’J
is mapped onto an irreducible component. Let K’/ K be an extension of fields such that
the absolute values coincide on K. Using the proof of Proposition 2.13, we see that
A=A @y (K')° is an admissible (I/(\/)O-algebra. Let X' be the generic fibre of Spf4” and
let m; be the multiplicity of X’ in its irreducible component X;. We denote by
div(a; K ) the vertical Weil divisor on Spf 4’ with multiplicity

) =Y m; Y e(V)K'(75): K' (07 )llog|a (7))

I/j,

in the irreducible component W' of Specz where j is ranging over the indices of the
irreducible components of X’ and V}' is ranging over all irreducible components of X; lying
over W'. We have to prove

2) div(a; K*) =div(a; K) ®z K*.
Passing to a formal open subset, we may assume that W is the only irreducible component

of Spec 4. Note that the ramification indices do not change (Lemma 3.18). By noetherian
normalization, there is a finite morphism from Spec 4 onto Spec K [x,, ..., x;] where d is
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the dimension of W. Let ¢ : SpfA4 — SpfK°{x) be any lift of this morphism and let Q be
the field of fractions of K{x). Two applications of Lemma 6, once to the K°{x)>-algebra
A and once to the (I/(\”)O {x)-algebra 4 ®y. (I/(\“)O, show that it is enough to prove the claim
for 4 ®K(<X>QO. Note that O is stable ((BGR], Theorem 5.3.2/1, Proposition 3.6.2/3).

So we may assume from the beginning that A is finite over K. By Theorem 1.9 and
1.10, X is finite over K. There is a finite extension L /K such that the irreducible com-
ponents of SpA ®- L are L-rational points and such that the irreducible components of
Sp A ®; L are L-rational points. Easily, we get

div(a; K*) = div(a; L) @ ; K*

and so it is enough to prove
3) div(a; L) = div(a; K) @z L .

Let K* be the separable closure of K in L. Then K* has a primitive element & with
minimum polynomial f over K. Let fe K°[x] be a lift of /. By Hensel’s Lemma, & may
be lifted to a simple zero o€ L° of f. Then K(x) is the maximal unramified extension of
K contained in L and (K(x))~ = K*. Therefore it is enough to prove (3) for finite purely
inseparable extensions L/ K and for finite unramified extension L /K, respectively.

There is a finite field extension K;/K such that X; = Sp K. Let m; be the multiplicity
of X in X;. Note that K; ® L is isomorphic to a finite product of finite dimensional local
L-algebras R;, with residue fields L;,. Then the irreducible components of X:=Sp 4 ®y.L°
are equal to the full list X}, = Sp L;,. The decomposition of cyc(X”) into prime cycles is
equal to

cyc(X') = Z mj/(Rjk) cyc (/Yj,k)
ik

where / denotes the length of a ring. Let us fix an irreducible component W’ of Spec 4 ®; L
lying over the irreducible component W of Spec A. Then the multiplicity of div(a; K) in
W is equal to

“4) — 2 mye(K; K)[K;: R(W)]log|al,

where j is ranging over all irreducible components X; with Yl lying over W and where | |;
is the continuation of | | to K; with ramification index e(K;/K). Similarly, the multiplicity
of div(a; L) in W’ equals

(5) — Ym;l(Ry) e(Ly/L)[ Ly : LW log]al

where j, k is ranging over all irreducible components X}, of X’ with ;Y?; lying over W' Let
us fix j with X; lying over W. As above, K; ®x L is a product of finite dimensional local
L-algebras S;; with residue fields ;. By considering the cartesian diagram
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Specffj ®,;L~ _— W®,gf

l l

Spec f('j — W

and using [Fu], Proposition 1.7, the multiplicity of W®g L in W' is equal to

(6) Sk E(W,)]

% ko 2

where / is ranging over all irreducible components of Spec K ;® Kf lying over W'. Suppose
that A:j’k is lzling over W’.NThen it is lying over an ir{glugible component Spec K, of
Spec K; ®g L. Then x4,/ L(W’) is a subextension of L, /L(W’). If we can prove

(7 e(K;/K)/(S;) = Z E(ij/L)/(Rjk)[[’jk Tk,

I(k)=1

then (3) follows from (4)—(6). By [Fu], Lemma A.1.3, we have
(8) £(S;) =[S;: L1/ [x;,: L]
and
) C(Ry) =[Ry: L]/[Lj: L].
By stability of L ([BGR], Corollary 3.6.2/7), we have
(10) e(Ly/L)[Ly: L1 =1[Ly:L].
Using (8)—(10), (7) is equivalent to

(11) e(K,/K)[S;:L1= Y [Ry:L].

Ik)=1

First, we suppose that /K is purely inseparable. From the theory of tensor products of
fields, we know that K; ®x L is a local L-algebra, i.e. there is only one index /. Hence (11)
reads as

(12) e(K,/K)[K;: K]=Y [Ry:L].

The right hand side equals [K;: K] and (12) follows by stability.

Finally, we have to consider a finite unramified extension L/K. As we have seen
above, L is generated by an element o of absolute value one with I = K(&). We have
denoted the minimum polynomial of o by f(x). Since [L:K]=[L:K], we have
e(L/K)=1. By [BGR], Proposition 3.6.2/4, we get

L° = K°[x]/<{f(x)).
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It follows that
K;®@x L= K;[x]/<{f(x)).

Then f(x) is the product of distinct K;-irreducible polynomials f, (x) with

Rjk = Kj [x]/<fk(x)> .

By Gauss’ Lemma, we may assume that all factors f, (x) have Gauss norm one. By Hensel’s
Lemma and the separability of f(x), the reductions fk (x) are K -irreducible and distinct.
We conclude that

Siw = K [x1/< fu(x)>
This implies

(13) m;:l [Ry:K1=1[S;:K].
Note that
[Ry: K] = [[115,.:: 1;]] [Ry: L]
and
[S;: K;]1= % [S;:L].

By stability, (13) implies (11). This proves the claim. O

Remark 5.8. Assume that K is stable and that the value group is divisible. Let X
be an admissible formal scheme over K° and let D, D’ be Cartier divisors on X intersecting
properly in the generic fibre X. In 5.2, we have defined a cycle D. D’ on X. For the vertical

s
part of D.D’, we have used base change to (K“)°. In our special case, we prove that this
is not necessary.

By linearity, we may assume that X is irreducible and reduced. Note that X/ 2" is
a distinguished formal analytic variety over K ([BGR], Theorem 6.4.3/1). Let % be the
associated formal scheme. First, we assume % = X, i.e. the special fibre of X is reduced.
By 5.1, we have a Cartier divisor Dy, on any irreducible component W of ¥. The claim is
that the vertical part of D.D’ equals

(14) S m(D', W) Dy . W

where m(D’, W) is the multiplicity of cyc(D’) in W. Let Zm’X’ be the decomposition of

the generic fibre of ¥':=X & i« (K %) into irreducible components X/. Let %] be the formal

scheme associated to Xj/f . Then the vertical part of the base change of D.D' to (K )°
is equal to

(15) Z m; Z m(D’, I/le/c) (ijk)* (Djk' I/I/jl,{)
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where W, is ranging over all irreducible components of %/ and where i;, : Wj; — X' is the
canonical finite morphism. Here, m (D', W};) is the multiplicity of the base change of D" in
W, and Dj, == Dy, W, is the canonical Cartier divisor on W, associated to the base change
of D. Let n: X' — X be the morphism induced by base change. Then we have

(e ijk)* (DW) =D
for any W), lying over W. By projection formula, (15) equals

S m(D, W')#*(Dy). W'

w

where m(D’, W') is the multiplicity of the base change of D’ in the irreducible component
W' of ¥’ lying over W. Applying base change to (14), we get the claim from the obvious

S m(D,WYW' =Y m(D, W)&*(W).

w’ w

Finally, if % & X then the claim follows from the above applied to % and the compatibility
of push-forward with base change.

Theorem 5.9. Let X be an admissible formal scheme over K°. If D and D' are Cartier

divisors on X with proper intersection in the generic fibre X (but not necessarily in X), then
D.D’'=D'.D in the sense of cycles.

Proof. We may assume that K is algebraically closed (Lemma 3.12). The claim is
true in the generic fibre (Proposition 2.11). So it is enough to check commutativity in a
prime cycle W of codimension 1 in X. Passing to an open subset containing the generic
point of W, we may assume that X is formal affine and that the Cartier divisors D, D’ are
given by single equations on X.

Let d be the topological dimension of W. By noetherian normalization, there is a
morphism ¥ — SpecK[y,,...,y,] whose restriction to W is finite. We choose a lift
@ : X — SpfK°{y) of this morphism. Let Q be the field of fractions of K{y). Then Q is
stable ([BGR], Theorem 5.3.2/1) and the value group is divisible. The same is true for
the completion O ([BGR], Proposition 3.6.2/3). By Lemmata 6, 7 and Remark 8, it is
enough to prove the claim on X'in the closed irreducible subset W':=W ®g,; 0. By const-
ruction, W' is zero-dimensional and any irreducible component of X’ containing W' is a
curve. So we may assume that the special fibre and the generic fibre X’ of X' are of pure
dimension one.

Using the above reduction steps and linearity, we may assume that X is an irredu-
cible and reduced affinoid curve over the algebraically closed field K and that the divisors
D, D’ are given by single equations. By Lemma 5, Remark 3.14 and Theorem 1.13, we
may replace X by an irreducible reduced curve X’ with a proper morphism X' — X onto
X and we may use any admissible formal model of X’ lying over X. By passing to the
normalization, we may assume that X is also non-singular and X = Spf.e/° where .7 is
the K-affinoid algebra of X. Clearly, it is enough to prove the claim for D, D’ given by
a,a’€ o/ °\{0}.
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Next, we want to replace X by an open subset of a non-singular projective curve
using the techniques of [BL1]. Let X, (W) be the formal fibre in X over W with respect
to the reduction map. We denote by j,, ..., 7, the points in the normalization X' of X
lying over W. If V,, ..., V, are the irreducible components of X, then J, is in the normali-
zation W, of V. Let o € K* with |o|=[a(V;)|. Then (a/o;)~ may be viewed as a
rational function on V;. Let ord; (a) be the order of (a/oy;)”~. By passing to a formal
subdomain, we may assume that it exists f€ .o/° such that f has an isolated zero in W. By
[BL1], Lemma 2.4, for 0 <r <1, re|K*| and r sufficiently close to 1, the periphery
{xe X, (W);|f(x)| =r} of the formal fibre X, (W) decomposes into n connected compo-
nents R, ..., R, where R; can be identified with the semi-open annuli

{zeBYr; <z <1}

1/ordy;

where r;:=r ). Moreover, we have

f= Zordg,i(f)

and
(16) ajo, = z°95@

on R; up to units in Of(R;) ([BL1], Lemma 2.5). By pasting X, (W) with the discs
B;:={zeP';|z| 2 r;} along R, for all i=1,...,n, we get a curve Y. Clearly, Y is proper
over K and therefore Y is the rigid analytic variety associated to a non-singular projective
curve. On Y, we use the formal analytic structure given by the admissible formal affinoid
covering

(zeB;lzlzr}, i=1,...,n,
together with

U=\ ) {zeBilzl > n) = (re Xi | /()] < 1)

i=1

(cf. [BL1], Proposition 4.1). Let % be the associated admissible formal scheme, then %
is the union of n copies L, ..., L, of P§ meeting all in a point ¢ and the i-th copy minus
q is B,. Here, we use that formal fibres are connected ([Bo 3], Satz 6.1). The formal fibre

Y, (q) over ¢ is equal to X, (W)\ (J R;. Let ¢; be the point in the normalization of
i=1
lying over ¢ and lying in the component over L,. Since the periphery of Y,(g) has
boundary {| f(x)| =r}, it follows from (16) that
(17) la(Ly)| = 5@ a(V)|
and

(18) ord;, (a) = ord,, (a) .

Note that a, a’ induce Cartier divisors div, (a), div,(a’) on the admissible formal affine
scheme % = U/~ *®, We claim that it is enough to prove
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(19) divy (a).div, (a') = div, (a').div, (a)

in ¢. Since r is sufficiently close to 1, the horizontal parts of cyc(D), cyc(D’) intersected
with X (W) are supported in U and equal to the horizontal parts of the Weil divisors
associated to divy (a) and div,, (a’), respectively. It follows that the difference of the multi-
plicities of D".D in W and of div, (a’).div, (@) in ¢ is equal to

— Z Ord);i (a’) log | a(Vk(i)) |

i=1

minus

— i ordqi(a/)log|a(Li)|.

i=1

Using (17) for a and (18) for a’, we see that the above difference is symmetric in a and a’,
i.e. it is enough to prove (19).

By the semi-stable reduction theorem, Y has a model %’ with semi-stable reduction.
By a careful look at the proof of [BL1], Lemma 7.3, we may assume that the formal
topology on Y induced by %’ refines the formal topology induced by #. In fact, the con-
struction of %’ is by blowing up the singularities of %/~ 2. We conclude that U has an
admissible formal model with semi-stable reduction.

To summarize the above reduction steps, it is enough to prove the claim for an
admissible formal affine scheme X = SpfA over K° with semi-stable reduction such that
the generic fibre is an irreducible and non-singular curve X over the algebraically closed
field K. Remember that we have to check

(20) D.D'=D'D
in the closed point W of X where D, D’ are given by a,a’€ A.

First, we assume that W is a non-singular point of X. By [BL1], Proposition 2.2,
the formal fibre X, (W) of W in X may be identified with the open disc B2 (0). On the
disc, we use the coordinate function z. Let ¥ be the component of ¥ passing through W
and let o, € Kwith |ay,| = |a(V)|. Let t be the order of the reduction of @/« in W. Consider
the power series expression

o0
a= > a,z"
n=0

on B1(0). By [BL1], Lemma 2.4, a,z" is dominant at the periphery of B(0), i.e. 7 is the
smallest £ € N with

la,| = max|a,| = [a(V)].
n

By Hensel’'s Lemma ([Bou], chap. III, §4, Théoréme 1), a has exactly 7 zeros «;, ..., o,
(counted with multiplicities) in B (0) and we have
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a=uz—a) (=)

where the power series u is a unity on B (0). Similarly, we have a decomposition

/

a'=u'(z—ap) (2 —al)

of a’ on B%(0). Then the multiplicity of D.D’ in W is equal to

—tloglay| — 3. logla(oy)]
k=1

T

= —cloglal|— ¥ loglu@)l— Y Y loglo;— o).
k=1

j=1 k=1

Here, the first summand is obtained by intersecting D with the vertical part of cyc(D’)
and the remaining terms are from the intersection of D with the horizontal part of cyc(D’).
For the unity u, the constant term of the power series expression is dominant on the
periphery of B (0), so we have

lu(e)| = lu(V)| = |a.l
for all k. By symmetry, we get (20).

Now we assume that ¥ is an ordinary double point of ¥. Let us denote by W, and
W, the points in the normalization of ¥ lying over W. Note that the formal fibre X, (W)
is isomorphic to an open annulus of height » ((BL 1], Prop. 2.3). Assume, for the moment,
that ¢ and @’ are units on X, (W). Let V;, ¥, be the components of X passing through W
(possibly V; =V,). We may assume that I, lies in the normalization of V; (i =1,2). Then
the multiplicity of diva.diva’ in W equals

—log|a’(Vy)|ordy, (a) —logla’(V,)|ordy, (a).

Note that this is true in the case V; =V, because of the identity ordy, (a) = ordy, (a) =0
([BL1], Proposition 3.2). Using ordy, (a) = —ordy, (a) ((BL1], Proposition 3.1), the multi-
plicity above equals

ordy, (@)log(la'(Vy)|/1a'(V))]) .
By [BL1], Proposition 3.2, this equals
—ordy, (a)ordy, (a)logr.

By symmetry, this proves the claim for units @, a’ on X (W). Now we assume no longer
that @ and a’ are units on X, (W). We choose little balls B; around the zeros and poles
Xq, ..., X, of @ and a’ contained in X (W). By [BL1], Proposition 4.1, these balls together
with the complement of | ) (Bj)+(%;) form an admissible formal affinoid covering of X

J
inducing a finer formal analytic topology. Let X' — X be the corresponding admissible
formal blowing up. By Lemma 5, it is enough to prove (20) for a closed point W’ of ¥’
lying over W. But either W' is a regular point of X’ or ¢ and &’ are units on the formal
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fibre over W'. The first case is already settled. In the second case, we use another admissible
formal blowing up to get double points lying over W'. As a and «’ are units on the fibres
lying over these double points, we get the claim. O

6. Comparison with usual intersection theory

Let K be a field with a non trivial non-archimedean complete absolute value | |. We
discuss first the relation between divisors on schemes and on its associated rigid analytic
varieties.

6.1. Let X be a scheme locally of finite type over K. Naturally, there is a rigid
analytic variety X" over K associated to X given by the following construction. Locally,
X is given by a closed immersion into affine space. Using the same set of equations, we
get a K-affinoid variety embedded in the closed ball with center O and radius r € | K*|. By
a gluing process with respect to varying r and varying affine open subsets of X, we get
X, There is a natural flat morphism X*" — X of locally G-ringed spaces inducing a
bijection between K-rational points ([Be1], Theorem 3.4.1). We have a pull-back homo-
morphism Z +— Z*" between cycles of X and X*". From flatness, we get

Proposition 6.2. [If D is a Cartier divisor on X with pull-back D*" to X*", then
cyc(D)*" = cyc(D™).

Note that X — X *" is functorial. Let ¢ : X' — X be a morphism of finite type. Then
we have a morphism ¢*": (X')* — X*". The morphism ¢ is finite (resp. proper, resp. flat)
if and only if the corresponding property is true for ¢** ([Be1], Proposition 3.4.7).

Proposition 6.3. Under the hypothesis above, we have:

(a) If ¢ is proper and Z' is a cycle on X', then ((p>l< (Z"))™ = (@™), (Zz"H™).
(b) If ¢ is flat and Z is a cycle on X, then ¢*(Z)*" = (¢*")*(Z*").

(c) If Y is a closed subspace of X, then cyc(Y)*" = cyc(Y*").

Proof. By a local consideration, (c) follows from the following fact for noetherian
schemes: Flat pull-back commutes with forming the cycle associated to a closed subspace
(cf. 2.8).

To prove (a), we may assume that Z’ is a prime cycle and that Z'= cyc(X’). More-
over, we may assume that ¢ is surjective. Note that Y*" is of pure dimension n if Y is of
pure dimension n. So we may assume that X and X’ have the same dimension. Then ¢ is
finite over an open dense subset U of X. It follows that ¢*" is finite over U*". By definition
of (¢p™"),., we may suppose that U = X, i.e. ¢ is finite. Moreover, we may assume X = Spec 4.
There is a K-algebra and finite A-module A" such that X’ is isomorphic to Spec A’ Let
a,...,a, be a set of generators of the 4-module 4". The K-algebra A is a quotient of
K[x,,...,x,] given by the relations f(x), ..., fj;(x). Then A’ is given in



Gubler, Local heighs of subvarieties 99

K[X1, ooy Xy Voo Vol

by the relations f(x), ..., f1(X), &,(X,¥), ..., gy(X,y) where a; corresponds to y;. Using
the multiplication of A’, we get relations

n

(1) ViyV; = Z aijk(x)yk'

k=1

Let r, Re|K*|. Locally, X*" is given by the K-affinoid algebra

K10 (i), - fu (X))

and (X")*" is given by the K-affinoid algebra

K<}"_1X,R_1y>/<f1(X), "'an(X)agl(Xay): "'agN(x’y)> .

If R is sufficiently large, then the latter is isomorphic to

K™ Iyl fi (s s fu (%), 81 (X, ¥), -0 gn (X, ¥))
because of the relations (1). We conclude that, locally in X**, the diagram

(X/ ) an an“ X an

| |

x 25 x

is Cartesian. Then (a) follows from the corresponding statement for noetherian schemes
as in Proposition 2.12. Finally, (b) is an immediate consequence of flatness of X*" —» X. O

6.4. Now we suppose that | | is a complete discrete absolute value on K. Let K° be
the discrete valuation ring of K with uniform parameter n. We assume that the absolute
value is normalized by —log|z| =1. Let X be a flat scheme locally of finite type over K°
and let D be a Cartier divisor on X. The maximal ideal of the discrete valuation ring K°
is denoted by K°°.

The formal completion X of X is given by the following construction. Let Spec 4 be
an affine open subset of X. Then the formal completion of Spec A4 is Spf 4 where A4 is the
completion of A with respect to the K°°-adic topology. By a gluing process, we get X.
Note that 4 is a flat 4-algebra ((BGR], Corollary 7.3.1/6). It follows that X is an admissible
formal scheme over K °. Naturally, the special fibre of X is isomorphic to the special fibre
I=x Rk Kof X. Using the local construction above, D induces a Cartier divisor Don X.

Proposition 6.5. Under the isomorphism above, the vertical part of the Weil divisor
associated to D on X corresponds to the vertical part of the Weil divisor associated to D on X.

Proof. We may assume X = Spec4 and D = div(a) for an element y € 4 which is
not a zero-divisor. Since Spec 4 is a flat noetherian scheme over Spec 4, it is enough to
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show that the vertical part of div(y) on Spec A (in the sense of algebraic geometry) is equal
to cyc, (D). By localizing, we may assume that X has only one component. Using noetherian
normalization, there is a morphism ¢ : X — A%. such that the restriction to special fibres
is a finite surjective morphism. Then ¢ induces a morphism ¢ : X - SpfK°{x,, ..., x;>
with the same property. Let [¢) be the field of fractions of K°{x)>. By Lemma 5.6, it is
enough to compute cyc, (ID on ¥ =X¥®, -y @ In its proof, we have seen that

=A®g o @7 1s a flat A-algebra. Therefore, the vertical part of div(y) on SpecA’ is
equdl to the pull-back of the vertical part of div(y) on SpecA. Using Lemma 5.6, it is
enough to prove the claim on X'. By linearity, we may assume that 4’ is an integral domain.

We denote the Q-affinoid algebra A’ ®yp O by .7’ By 1.10, </ is is finite over A’ and
therefore o/’ is finite over 0. It follows from Theorem 1.9 that ./’ is a finite O-module.
By [BGR], Corollary 6.4.1/6, (.<Z")° is a finite 0°-module and so it is a finite 4-module.
By projection formula, it is enough to prove the claim on Spf(.e/')°. Since A’ is an integral
domain, .7’ is a finite field extension of Q. An application of Lemma 5.7 proves the
claim. O

Remark 6.6. Under the assumptions of 6.4, the generic fibre X of ¥ is a subdomain
of the rigid analytic variety X *" associated to the generic fibre X of X. The K“-rational
points of X are equal to the (K“)°-integral points of X (note that X (K%) = X*"(K)). Since
the morphism X — X" is flat, the horizontal part of cyc(D) is equal to the pull-back of
the horizontal part of cyc(D) under the morphism X — X. Using pull-back with respect
to this morphism for horizontal cycles and (¥)~ ~ X for vertical cycles, we get a homo-
morphism Z — Z from cycles on X to cycles on X. By Proposition 2, this map com-
mutes with flat pull-back and with proper push-forward. Moreover, if Z is a cycle on X
intersecting the Cartier divisor D properly in the generic fibre, then Propositions 2 and 5 give

(D.2)'=D.7.

7. Formal and approximable metrics

In this section, K is an algebraically closed field with a non-trivial non-archimedean
complete absolute value | |. Let L be a line bundle on the rigid analytic variety X over K.

7.1. The line bundle L is given by an admissible open covering {U;} of X and
transition functions g;; € O (U, n U;) satisfying g;; = 1 and g;;g;, = g, Then {U}, g;;} is called
a trivialization of L. A metric on L is given by functions g; on U; with values in the value
group | K*| satisfying

ei(v)|g;; ()| = ¢;(x)

for all x e U,. If s is a regular section of L on U;, then s corresponds to a regular function
y; on U; and we have

sl = [7:(x)] i () -

As usual, we define dual metrics, tensor metrics and pull-back metrics.
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Definition 7.2. If X is an admissible formal scheme over K° with generic fibre X,
then X is said to be a K°-model of X. Similarly, if .# is a line bundle on X inducing L on
X, then & is said to be a K°-model of L.

Definition 7.3. A metric || || on L is said to be formal if there is a trivialization
{U,, g;;} such that the metric is given by the functions ¢, =1.

Obviously, the dual, the tensor product and the pull-back of formal metrics are again
formal metrics.

Lemma 7.4. Suppose that & is a K°-model of L on the K°-model X of X. Then we
have a canonical formal metric || ||, on L with the following property. If U is the generic
fibre of a formal open subset U such that £\, is trivial and if s€ L(U) corresponds to a
function y under this trivialization, then we have

sl = [7(X)]
for all xe U.

Proof. Let {;,g;;} be a trivialization of . Then the functions g;; are units in
Ox(U; ;). Therefore g;; and the inverse g;; have supremum norm 1 on U;n U; where U,
denotes the generic fibre of %;. In other words, we have | g;;(x)| =1 for all xe U;n U;. We
conclude that the functions g; =1 on U, describe a formal metric on L. Obviously, it has
the required property. O

We call || || , the formal metric associated to #. Next, we show that any formal metric
is of this form, at least locally. Let X,., be the subvariety of X with the same underlying
space and the induced reduced structure. Then L induces a line bundle L, .4 on X,.4. There
is a one-to-one correspondence between metrics on L and on L.

Proposition 7.5. Suppose that X is quasi-compact, quasi-separated and reduced. Then
any formal metric || || on L is the formal metric associated to a K°-model & of L on a
quasi-compact K°-model X with reduced special fibre. Moreover, ¥ is canonically iso-
morphic to the sheaf (L)° given by

(L) (@)= {se L(U);|ls(M)[ £1 VYxeU}
on a formal open subset U of X with generic fibre U.

Proof. Let {U,g;;} be a trivialization of L such that || || is given by the function
0; =1 on U,. We may assume that the open subsets U, are K-affinoid. By [BL4], Theorem
5.5, there is a quasi-compact K°-model X of X and a formal open covering {%;} of X such
that the generic fibre of %, is U,. Replacing X by the formal scheme associated to X/~ 2",
we may assume that ¥ has reduced special fibre. Clearly, (L)° is a sheaf on X. On %,, it
is isomorphic to (5. Therefore (L)° is a line bundle on ¥ with associated formal metric
| ||. If & is another line bundle on X with associated formal metric|| ||, then .# is canonically
isomorphic to (L)° since we may identify % (%) with the subset (L)° (%) of L(U) by flatness
of X. O
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Lemma 7.6. Suppose that X is quasi-compact and quasi-separated. Then there is a
K°-model ¥ of L on a quasi-compact K°-model X of X.

Proof. By [BL3], Proposition 5.6, there is a quasi-compact K°-model X of X and
a coherent Oy-module # on X such that the restriction of & to X is equal to L. Let {%,}; .,
be a formal affine open covering of X. By [BL4], Theorem 5.5, we may assume that L is
trivial on the generic fibre U, of %, for all ie I and that [ is finite. The 0, (%;)-module
F(U;) 1s generated by finitely many f;;. There is a non-vanishing section y of L on U, with
Ji; = &7 for suitable g;; € Oy (%;). Then the elements g;,, g;,, ... generate an open ideal in
Ox(%;). Using admissible formal blowing ups, we may assume that these ideals are prin-
cipal (cf. [BL3], section 2), i.e. # (%) is generated by one element for all i. By [BL3],
Lemma 1.4, ¥:=%]%,, is a coherent O,-module. Since ¥ is locally monogeneous, it is
an invertible sheaf. We conclude that % gives rise to a K°-model of L.

Corollary 7.7. Any line bundle L on a quasi-compact and quasi-separated rigid analytic
variety X over K has a formal metric. If s is a local section of L defined and non-vanishing
in different points x, y, then there is a formal metric || || on L with ||s(x)|| £ ||s(»)||.

Proof. By Lemmata 4 and 6, there is a formal metric on L. Hence, to prove the
last claim, we may assume L = Oy and s = 1. Using [BL4], Theorem 5.5, we get a quasi-
compact K°-model X of X such that the reductions X, y of x, y are different. Let us con-
sider an admissible formal blowing up n: X' — X in an ideal " in ¢, with support in j.
Then the ideal (. is invertible with an inverse .. We conclude that % is a K°-model
of L and the canonical extension § of s vanishes in . Let || || be the formal metric asso-
ciated to %, then we have ||s(y)|| <1 and [|s(x)||=1. O

Lemma 7.8. If || |l;, || ll, are formal metrics on L, then max{|| ||, |l,} and
min {|| ||, || ||,} are formal metrics on L.

Proof. A trivialization of L is given by an admissible open covering {U,};.; of X
and non-vanishing s; € L(U,). Then the transition functions g;; are equal to s;/s; and the
metric is given by ¢; = ||s;|| on U;. Now let {U,, s;;} and {U,,s;,} be such trivializations of
L inducing ¢; =1 for || ||; and || ||,, respectively. Note that

Ui1‘= {XG Ui; | ||1 || “2 on Lx}
and
Up,={xeUs|lll;=Il,on L}

are subdomains of U;. We get a new admissible open covering {U;;};.; j=1., of X. On U,
we have

maX{HSij“h ||Sij||2} =1.
Therefore {U;;, s;;};c;.j=1., induces a trivialization of L such that the functions g;; of the

metric max {|| ||, || I|,} are equal to 1. This shows that max{|| ||;, || I|,} is a formal metric.
Similarly, we prove that min{|| ||;, || ||} is a formal metric. O

7.9. Suppose that X is quasi-compact and quasi-separated. Then X is a dense subset
of the Berkovich-compactification X® ([Be2], 1.6). If X = Sp.oZ is K-affinoid, then X% is
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the set of semi-norms p on .o/ satisfying p(1) =1, p(ab) = p(a)p(b) and p(a) £ |al,, for
all a, b € .o/. We identify x € X with the seminorm a+ |a(x)| in X5, The topology on X2
is the coarsest topology such that the maps p +— p(a) are continuous for all ae .o/, If X is
not K-affinoid, then X2 is constructed by a gluing process with respect to a finite admis-

sible open affinoid covering of X. Then X® is a compact topological space.

Definition 7.10. A metric || || on L is called extendable if and only if, for any non-
vanishing section s of L on an open affinoid subvariety U, the function log||s|| has an
extension to a continuous function on U%,

Then the continuous extension is unique and it is also denoted by log||s||. There is
a trivialization {U}, g;;} of L where {U;} is an admissible open covering of X by finitely
many open affinoid subvarieties. If the metric || || on L is given by the positive function
0; on U, then || || is extendable if and only if all functions ¢; have continuous strictly
positive extensions to UZ. Note that the formal metrics on L are extendable.

Definition 7.11. If || || and || ||" are metrics on L, then we get a real function || ||'/]] ||
on X by mapping x to |[s(x)]|'/||s(x)|| where s is any local non-vanishing section of L in
x. Clearly, this is independent of the choice of 5. A sequence of metrics (|| ||,),cn ON L 18
said to converge to the metric || || if and only if, for any open affinoid subvariety U of X,
the sequence

sup (|| I/ 111D

converges to 1. A metric || || on L is called approximable if and only if there is a sequence
(] Il,)4en of metrics on L converging to || || such that a non-trivial power of || ||, is a formal
metric for all ne N.

Obviously, the tensor product, the dual, the pull-back and the limit of approximable
metrics are again approximable metrics.

Theorem 7.12. Let L be a line bundle on the quasi-compact and quasi-separated rigid
analytic variety X over K. Then a metric on L is approximable if and only if it is extendable.

Proof. First, we assume that the metric is approximable. Then there is a sequence
(I II,),en of metrics on L such that a non-trivial power of || ||, is a formal metric for all
ne N. Let s be a non-vanishing section of L on the open affinoid subvariety U. The metrics
|| ||, are extendable. Since U is dense in U®, (log||s||,),.n is @ Cauchy sequence in the space
C(U?®) of continuous real functions on the compact set U®. It converges to a continuous
real function extending log||s|| to U®. Therefore || || is extendable.

Conversely, we have to show that any extendable metric on L is approximable. By
Corollary 7, there is a formal metric on L. So we may assume that L = Oy. Let us con-
sider the Q@-subspace

F:={—log||1||*™; || || formal metric on L, me N\{0}}

of C(X®). By Lemma 8, F is closed under forming maximum and minimum. By Corol-
lary 7, F separates points of X. Indeed, the same proof shows that F separates points of



104 Gubler, Local heighs of subvarieties

XB. As a consequence of the Stone-Weierstrass theorem, F is dense in C(X*#). This proves
that any extendable metric on L is approximable. 0O

Definition 7.13. Let L be a line bundle on X. A formal metric || || is called positive
if thereis a K°-model & of L with || || = || || » such that some power of . is base-point-free.

Remark 7.14. Clearly, the tensor product and the pull-back of positive formal me-
trics remain positive (use Theorem 1.13).

8. Formal metrics and intersection theory

Let K be an algebraically closed field with a non-trivial non-archimedean complete
absolute value | |. We consider a line bundle L on a quasi-compact and quasi-separated
rigid analytic variety X over K.

8.1. Let .4, be the set of K°-models of X. Then .# is non-empty (Theorem 1.13).
There is a (partial) order relation on .#y by defining X' = X' if there is a K°-morphism
w: X — X of formal schemes inducing the identity on X. Note that = is the only K°-
morphism extending the identity ([BL 3], proof of Theorem 4.4). If X, X’ € .4y, then there
is X" e My and admissible formal blowing ups X' —» X’ and X" —» X (Theorem 1.13), i.e.
My 1s a directed set.

In fact, we use .#y only for reduced X. Then X is distinguished ((BGR], Theorem
6.4.3/1), and for any X € .#,, there is X' € .4, with reduced special fibre and X' = X. So
we may restrict our attention to K°-models with reduced special fibres or, equivalently,
to formal schemes associated to formal analytic structures on X (Proposition 1.11).

In the following, we denote the group of cycles on an algebraic variety, on a rigid
analytic variety or on an admissible formal scheme V' by Z(V).

Definition 8.2. The group of vertical cycles on X is defined by

Z(X,v):= lim Z(3)

xe./ﬂxred

where the inverse limit is with respect to 7, for morphisms n: X’ — X of K°-models.
Moreover, let

Z(X)=Z(X)® Z(X,v)
and

CH(X,v):= L@ CH (X,v)
xe'/plxred

where the inverse limit is again with respect to push-forward. For elements of Z'(X) or

CH(X,v), the component in Z(X) is called the horizontal part and the second component

is called the vertical part.
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Lemma 8.3. If¢: X' — X isaproper morphism of quasi-compact and quasi-separated
rigid analytic varieties over K, then, by componentwise push-forward, we get a canonical
push-forward ¢, : Z(X',v) — Z(X,v). In particular, if Y is an analytic subset of X, then
Z(Y,v) may be viewed as a subgroup of Z(X,v).

Proof. For ae Z(X',v), the push-forward b:= ¢, (a) e Z(X,v) is defined in the fol-
lowing way: For X € .y __, thereis X'e .4y, such that ¢ extends to a morphism ¢: X' — X
(Theorem 1.13). Then the reduction ¢ of ¢ 1s proper (Remark 3.14) and we define

by:= @, (ay ). Clearly, this gives a well-defined homomorphism ¢, : Z(X',v) —» Z(X,v).

If %e . ly,_,, then there is %' = % and X € .y __, such that %' is a closed subscheme
of X ([BL4], Corollary 5.4). Since Z(#') = Z(X), we get the last claim. O

Using the usual push-forward on horizontal components (2.6), we get a group homo-
morphism ¢, : Z(X') - 2 (X). Clearly, it induces a push-forward map

¢, CH(X',v) > CH(X,v).

Proposition 8.4. Let s be an invertible meromorphic section of L and let || || be a
metric on L such that || |™ is a formal metric on L®™ for some m > 1. If div(s) intersects
the horizontal part of o€ CH(X,v) properly, then there is an element ai\v(s) ae CH(X,v),
uniquely determined by the following condition: If (X, %) is a K°-model of (X,.q4, L2T) with

™=, on L2® and if § denotes the unique extension of s2 to a meromorphic section
of &, then

(div(s).0), = niq div(5). 05 € CH(X, v).

The class gi;(s).oc is called the intersection product of div(s) and o.

Proof. We choose a K°-model X of X, 4 with reduced special fibre. If the line bundle
% on X is a K°-model of LE™ inducing the right metric on L2, then % is determined

red red

by the formal metric up to isomorphism (Proposition 7.5). We define the component
of (Ti?/(s). o on X by the formula above. If X' = X is a K°-model of X with reduced special
fibre, then the definition is compatible with push-forward. By Proposition 7.5, we get a
well-defined element @(s).oc € CH(X,v). Using the definition of intersection product on
admissible formal schemes, we see that the required property is satisfied. O

A metric as in Proposition 8.4 is called a root of a formal metric. The following two
results follow directly from the corresponding properties of intersection product on K °-
models.

Proposition 8.5 (Projection formula). Let ¢ : X' — X be a proper morphism of quasi-
compact and quasi-separated rigid analytic varieties over K. Suppose that the horizontal part
of o€ CH(X',v) intersects @*div(s) properly where s is an invertible meromorphic section
of L on X. If the metric || || on L is a root of a formal metric, then

0, (div(p*s).a") = div (s). o, (@)
in CH(X, v).
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Theorem 8.6. If's, s’ are invertible meromorphic sections of the line bundles L, L' on
X and if div(s), div(s') and the horizontal part of o€ CH(X,v) intersect properly, then we
have

div (5).div (s"). o« = div (s7). div (5).
in CH(X,v) for all metrics on L and L’ which are roots of formal metrics.

Lemma 8.7. Let X' = X be K°-models of X both with reduced special fibres. For any
irreducible component W of X, there is exactly one irreducible component W' which is mapped
onto W. Moreover, the induced morphism W' — W is birational.

Proof. By passing to formal subdomains, we may assume that ¥ = . Let us choose
o€ K°°. Applying projection formula to the morphism X’ — X and div(x) on X, it follows
that there is exactly one irreducible component W’ of ¥’ mapping onto W and
K(W) =~ K(W"). This proves the claim. 0O

Proposition 8.8. Let s be a global section of L. On L, we consider a root || || of a
Jormal metric. Suppose that X has a K°-model X with reduced special fibre X (e Xis
reduced). Let m(s, W) be the multiplicity of (dlv (). cyc (X))y in the irreducible component
W of X. Then there is a non-empty open subset U of % contained in W such that

m(s, W) = —log|ls(x)|l
for all x € X with reduction in U.

Proof. First, we assume that || ||” = || || » for a K°-model % of L living on X. Then
the claim is a consequence of Lemma 7.4, Remark 3.5 and the definition of m(s, W). In
general, there is m =1 and a K°-model % of L®™ with || ||" = |||, (Proposition 7.5). We
may assume that % is a line bundle on X’ = X and that X’ has reduced special fibre (8.1).
Then the claim follows from the above applied to X’ and from Lemma 8.7. O

9. Non-archimedean local heights

Let K be an algebraically closed field with a non-trivial non-archimedean complete
absolute value | |. We fix e N. In this section, we define local heights of cycles of pure
dimension ¢ on a complete algebraic variety X over K. There is no loss of generality by
restricting our attention to algebraically closed complete fields because we can always
achieve this situation by base extension. Without any additional effort, the whole section
is more generally true for proper rigid analytic varieties over K instead of complete algebraic
varieties. However, then one has to assume that all intersections are proper.

9.1. On SpfK°, we denote by [1] (resp. [v]) the cycle induced by the generic (resp.

special) fibre. Then we have the following identities for the various groups of cycles
introduced in section §:

Z(SpK°) = Z(SpK) = CH(SpK,v) = Z[1] ® R[v] .
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Let p: X - SpecK be the morphism of structure. As in 6.1, we denote by X" the rigid
analytic variety associated to X. Then we have a pull-back homomorphism

Z(X) > Z(X™), Zw—> Z™.

For j=0, ..., let s; be an invertible meromorphic section of the line bundle Z; on X.
Note that L; induces a line bundle L5" on X*". There is a one-to-one correspondence
between metrics on L; and Li" and we identify them. On L, letA us fix a root of a formal
metric. We denote the corresponding metrized line bundle by L;. Note that s; induces a
meromorphic section 57" of L3". We denote the support of the Cartier divisor div (s;) (resp.
of a cycle Z) by [div(s;)| (resp. | Z]).

Definition 9.2. Let Z be a r-dimensional cycle on X. Then deg; ., (Z) denotes
the degree of Z with respect to L,,..., L,. Suppose that the intersection of |Z|,
|div (sg)], ---, | div(s,)| is empty in X. Consider

P (div (s3) ... div (s*). Z*) e CH' (SpK.v) .

It is a real multiple 2(Z) = Az, s)..... 0,50 (£) Of [v]. The number A(Z) is called the local
height of Z. (Note that for k > 0, the intersection of |div(s,)|, ..., |div(s,)|, | Z| has not to
be proper. On algebraic varieties, the intersection product introduced in § 8 may be refined
similarly as in [Fu], §2. Then the above definition makes sense.)

Proposition 9.3.  Under the hypothesis above, the local height A, o . i.s)(Z) is
multi-linear and symmetric in the variables (fj, S)izo..

Proof. Multilinearity follows from bilinearity of intersection product and symmetry
is a consequence of commutativity of intersection product (Theorem 8.6). O

Proposition 9.4. Let ¢ : X' — X be a morphism of complete algebraic varieties over
K. Suppose that Z' is a t-dimensional cycle on X' such that Z', div(p*s,), ..., div(p*s,)
have empty intersection in X'. Then we have

ALo50)s s (Eerso) (‘P* (z1) = Lt Lossors . o5 (L) -
Proof. This follows from projection formula (Proposition 8.5). O

Proposition 9.5. Let L, ..., L, be line bundles on the complete algebraic variety X
over K. Suppose that Z is a t-dimensional effective cycle on X and that s; is an invertible
meromorphic section of L; such that supports of div(s), ..., div(s,), Z have empty intersection
inX.OnL; (A] =1, ..., t), we choose a root of a positive formal metric with resulting metrized
line bundAle L;. Qn Ly, we consider two roots || ||, || || of formal metrics with metrized line
bundles L, and Ly, respectively. Let C, (resp. C_) be the supremum (resp. the infimum) of
the real function log(|| I’/ 1| 1) on the support of Z. Then the constants C,, C_ are finite
and we have

C_ deng L. (2) = ;“(I:o,so) ..... (Lerse) (Z)— j’(f,b,so) ..... (Le. s0) (Z)

< Cydeg,

,,,,,

.....
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Proof. By Theorem 7.12, log(]|| ||’/ ||) extends to a continuous function on (X )%,
Since the latter is compact, the constants C,, C_ are finite. To prove the inequalities, we
may assume Z prime and Z = cyc(X). For j=1,...,, there is m; = 1 and a base-point-
free K°-model & of (L;“)®”’f inducing the given formal metric || || on Li". Clearly, we may
assume that all line bundles %, ..., %, live on the same K°-model X of X*". Using the
different metrics on L,, we see that

Vi (div(sy) — div'(s)).cye (X ™)

is vertical, i.e. it is an element of Z(X*",v). By Proposition 8.8 and 8.1, we have
V< C,p*([v]), i.e. the inequality holds for the multiplicities in the irreducible components
of the special fibre of any K°-model. Note that the difference of local heights 41 — 4" is
determined by

pan(@iv(ssm) ... div (s). V) = (2 — 2)[v] -

To compute the left hand side, we may use the model X introduced above with morphism
of structure p: X — SpK°. Then the left hand side is equal to the intersection number

1 ~
ﬂp*(cl(gﬂi) (G V)

on X where j is the reduction of p. Since the line bundles ¥y are base-point-free, we
conclude

(=[] £ C, pi(@iv(sy) ... div (™). p* [v])
= C, [v].p" (div(s) ... div (i)

where the last step is by commutativity (Theorem 8.6) and projection formula (Proposi-
tion 8.5). Note that we can handle [v] as a Cartier-divisor, since a non-zero multiple of
[v] is the Weil divisor associated to a Cartier divisor on SpK°. By Propositions 6.2 and
6.3, we have

P (div (st ... div (i) = deg,, .. (Z)-[1]

.....

on Sp K. This proves the upper bound and similarly, we get the lower bound. O

Proposition 9.6.  On the complete algebraic K-variety X, let L, ..., L, be line bundles
with roots of formal metrics. For j =0, ..., 1, let s; be an invertible meromorphic section of
L; and let s, be another invertible meromorphic section of L. If Z is a t-dimensional cycle
on X such that

[divso)lldivis) [+ A ldiv(s)|n]Z] = 0
and
|div (sg) [N [div(s)[n - nldiv(s)|n|Z] =0,

then we have
/l(io,so) ..... (L¢,se) (Z) - /l(io,s(')) ..... (L¢,se) (Z)

= log

<&>mwﬁ“@w&2).

So
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’

(Here, for the rational function f:= ?, we define f(z n; P):= l_lf(l-"])"J where Zn]PJ is
J J J

the zero-dimensional cycle divs, ... di\?st.Z on X.)
Proof. The difference ' — A of local heights is determined by
(2 — 2] = pi (@i (f*).div (i) ... div (5). Z°)
where, for aRl(f am), we use the trivial metric on Oy. Then the above is equal to
Py (div(ﬁ).(div (5% ... div(s").Z*)) = —log| f(divs, ... divs,.Z)| - [v] .
The last step follows from Propositions 6.2 and 6.3. This proves the claim. O

Now let Z be a t-dimensional cycle on the multi-projective space P:=P" X --- x [P"
over K with fixed coordinates on each factor. Let F,(§,, ..., &) be the Chow form of Z.
It is a multi-homogeneous polynomial unique up to multiples. The degree d; of F, with
respect to the variable &;:= (&0, ..., §;,,) is equal to the degree of Z with respect to the
line bundles (Op(e;)); ;- We view &; as the dual coordinates on P™, i.e. the coordinates of
hyperplanes on P™. For j=0,...,¢ let 5; be a global section of O (e;). Its coordinate
vector is denoted by s;. Then F(s,, ...,s,) = 0 ifand only if div(s), ..., div(s,), Z have non-
empty intersection. This defines the Chow form for prime cycles. By linearity, the defini-
tion is extended to all cycles. We denote by | F,| the Gauss-norm of F.

The standard metric || || on Op.(1) is defined in the following way. Let x € P" with
coordinates x,, ..., x, and let s be a global section of Op.(1). Then we define

sl := |S(x)|/mj'flx | x; 1

By pull back, we get a formal metric on O (e;) called the standard metric. The same proof
as for the case of discrete valuations ([Gu 2], Proposition 1.12) shows the following result:

Proposition 9.7. If Z, div(s,), ..., div(s,) have empty intersection in P, then the local
height of Z with respect to (O, (e, 11 1, sj)jzo ,,,,, . s equal to

10g|FZ| _loglFZ(SO’ ~--ast)| .

Remark 9.8. For anirreducible and reduced algebraic variety X over K of dimension
1, let g be the set of isometry classes of base-point-free line bundles with roots of positive
formal metrics. Together with the local heights introduced in Definition 2, the propositions
above show that (g*, 1) is a theory of local heights for -dimensional varieties in the sense
of [Gu2], Definition 1.8.

Appendix. Coherent sheaves

Let K be a field with a non-archimedean non-trivial complete absolute value and
valuation ring K°. By using the techniques of [BL 3], section 1, we generalize [EGAT],
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10.10 to admissible formal affine schemes over K°. By ©, we denote a non-zero element
in K° which is not a unit.

A.1. Let 4 be an admissible K°-algebra and X = Spf 4. We assume that the reader
is familiar with the notion of coherent ¢,-modules ((EGA I], Chap. 0, 5.3). For an 4-module
M, we have an Op-module M* ([EGAT], 10.10.1), given by completing the U, ,-module
associated to M along Spec(A4/nA). A finitely generated 4-module M is called coherent
if any finitely generated submodule of M is of finite presentation. By [BL 3], Proposition

1.3, A is coherent. Moreover, an A-module is coherent if and only if it is of finite presen-
tation.

Theorem A.2. The covariant functor M — M* is an equivalence of the category of
coherent A-modules onto the category of coherent O-modules.

For the proof, we need the following results:

Lemma A.3. If N is a submodule of a finitely generated A-module M, then the m-
adic topology of M induces the m-adic topology of N.

Proof. Given ne N, we have to show the existence of 1€ N with
(n*M)AnNcn"N.

Let ¢ : F - M be a surjective homomorphism of a free A-module of finite rank onto M.
By [BL3], Lemma 1.2, there is a A€ N with

(" F)ne '(N)=n"p '(N).
Applying ¢, we get the claim. O
Lemma A.4.  For an A-module M and fe€ A, let M, be the completion of the loca-
lization M, with respect to the n-adic topology. Then M — M|, gives an exact functor from
the category of finitely generated A-modules into the category of finitely generated A,

modules.

Proof. Let 0 > M'— M — M"” — 0 be an exact sequence of finitely generated A-
modules. After localization in f, the sequence remains exact. For 4 € N, the sequence

0 —» M}/(Mjnn*M,) - M, |n*M; - M}|n* M} — 0

is also exact and this remains true if we take projective limits with respect to 4 (([EGAT],
Chap.0, Lemma 7.2.8), i.e.

0 — lim M}/ (Mpan*My) — M,y > M7 — 0
A

is exact. Here, we have used the description of the completion as a projective limit ((EGAT],
Chap. 0, Proposition 7.2.7). By Lemma 3, we easily deduce that
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0— My —> My — Mz — 0
is exact. This proves the claim. 0O

Corollary A.5. The functor M — M* is an exact functor from the category of finitely
generated A-modules into the category of Oy-modules of finite type.

Lemma A.6. If M, N are coherent A-modules, then we have natural isomorphisms:
i I'X,M>=M,

(i) M®,N)*=M>®, N*,

(i) (Hom, (M, N))* = Hom,, (M*, N*),

(iv) Hom, (M, N) =~ Hom, (M*, N*).

Proof. By definition, I'(X, M*) is the n-adic completion of M. Since M is finitely
generated, M is complete. By the proof of [BL3], Lemma 1.6, M is w-adically separated.
This proves (i).

For (ii), we have to show
M @y, Ny = (M@, N),

for all fe A. This follows from
M =M@, Ay,

To prove the latter, note that M is of finite presentation. Since the tensor product is right
exact and the functor M — M, , is exact (Lemma 4), it is enough to consider a free A4-
module M of finite rank. Finally, we reduce to M = A where the claim is obvious. This
proves (ii).

Moreover, the above isomorphism and Lemma 4 imply that 4, ,, is a flat 4-module.
By [EGATI], Chap. 0, 5.7.6, we get (iii). Finally, (iv) follows from (i) and (iii). O

Proof of Theorem A.2. First, we prove that M* is a coherent (O,-module if M is a
coherent 4-module. Let # be a formal open subset of X and let y: 0%, - M*|, be a
homomorphism. We have to show that the kernel is of finite type. We may assume that
U =SpfA, for some fe A. By Lemma 6, the homomorphism is induced by a homo-
morphism ¢ : 4%;, - M, ,,. By [BL3], Proposition 1.7, 4,,, is an admissible K°-algebra.
Since M, is an A,,-module of finite presentation (use Lemma 4), it is coherent. There-
fore the kernel of ¢ is coherent ((EGAT], Chap.0, Proposition 5.3.2). By Corollary 5,
kery is of finite type.

It remains to show that any coherent Ux-module Z is isomorphic to M* for a suit-
able coherent 4-module M. For ne N, let X,:=SpecA/n"**A. Using the above, we see
that (y, is a coherent Ux-module. It follows that 7, := # ®,, Ux, is a coherent Oy-module
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([EGAT], Chap. 0, Corollaire 5.3.7), and hence it is a coherent ¢y -module ([EGAT],
Chap. 0, Proposition 5.3.13). We conclude that %, is the coherent sheaf associated to
M,:=Z,(X,) (LEGAT], Théoréme 1.4.1). By [EGAT], Corollaire 1.4.3, M, is a coherent
A,==A/7n""! A-module. The modules M, form a projective system and their projective
limit M is a finitely generated 4-module with M ® , 4, = M, ([Bou], Chap. III, § 2, no. 11,
Proposition 14). Let F — M be an epimorphism of a free A-module F of finite rank onto
M. We have to show that the kernel G is finitely generated. We have an exact sequence

0> G/(Gnn"*"'F) » F/n""'F > M, > 0.

Since F/n" "' F and M, are coherent 4,-modules, G/(Gnr""!F)is a coherent 4,-module.
Taking projective limits, we get an exact sequence

0>G->F->M->0

where G is the m-adic completion of G (Lemma 3, [EGAI], Chap. 0, Lemma 7.2.8). It
follows that G = G is finitely generated ([ Bou], Chap. 111, § 2, no. 11, Proposition 14). This
proves that M is coherent. We have a canonical homomorphism .# — M* since M* is the
projective limit of the #,’s. Locally on an open subset % = Spf 4, ;, of X, 7 is the cokernel
of a homomorphism O — 0. Let M, be the cokernel of the corresponding homo-
morphism A}, — A},,. By Corollary 5, we have (M,,)* = 7 |,. Modulo powers of n, M,
is isomorphic to M, . Since M, is complete and separated with respect to the n-adic
topology (cf. Lemma 6 (i)), we conclude M,, = M, ,,. Therefore # — M 2 is an isomorphism.
This proves the claim. O
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