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CLASSICALLY PSH AND PLURIHARMONIC FUNCTIONS ON BERKOVICH SPACES
WALTER GUBLER AND JOSEPH RABINOFF

ABSTRACT. First we extend the theory of subharmonic functions on smooth strictly k-
analytic curves from Thuillier’s thesis to the case of possibly singular analytic curves over
anon-archimedean field k. Classically psh functions are then defined as in complex geom-
etry by using pullbacks to analytic curves (and requiring compatibility with base change).
We give various properties of classically psh functions including a local and a global max-
imum principle. As a consequence, we show that the space of pluriharmonic functions on
a quasi-compact Berkovich space is finite dimensional. As a technical tool, we use that a
connected Berkovich space is connected by analytic curves.

1. INTRODUCTION

Plurisubharmonic functions are the complex analytic counterparts of subharmonic func-
tions in real analysis. To recall the definition, we begin with the notion of subharmonicity
on the complex line. Let 2 C C be an open set and let u: 2 — [—00, ©0) be an upper
semicontinuous function. Then u is subharmonic if for every closed ball B(a, r) with cen-
ter a and radius r contained in 2 and every continuous function h: B(a,r) — R which
is harmonic on the open ball B(a, ) such that u < h on the boundary dB(a, ), we have
u<hon ]§(a, r). Note that the notion of (sub)harmonicity is insensitive to biholomorphic
maps, hence makes sense on any one-dimensional complex manifold.

Now let X be any complex manifold (without boundary, for simplicity) and let u: X —
[—00, 00) be an upper semicontinuous function. Then u is plurisubharmonic or psh if,
for every holomorphic map f: B(0,1) — X from the open unit ball B(0,1) c C, the
pullback u o f is subharmonic on B(0, 1). We say that u is pluriharmonic if u and —u are
plurisubharmonic.

Plurisubharmonicity was introduced by Lelong [Lel42] and Oka [Oka42] indepen-
dently to study holomorphic convexity. It turned out to be a crucial positivity notion
on complex manifolds. Plurisubharmonic functions satisfy the following properties:

(1) The space of psh functions forms a convex cone: that is, if u;,u, are psh and
A1, Ay =0, then A u; + Ayu, is psh.

(2) If uy,u, are psh functions then max{u,,u,} is psh.

(3) If {uy}r>1 is a decreasing sequence of psh functions, then u = limu; is psh.

(4) A psh function u satisfies the local maximum principle: if u attains a local maxi-
mum at x, € X, then u is constant on the connected component of x, in X.
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Now we consider the non-Archimedean situation. Let k be a field that is complete
with respect to a non-Archimedean absolute value | |. We refer to Section 2 for the
notions used from non-Archimedean geometry. The theory of subharmonic functions
on a smooth, strictly analytic k-curve X has been completely worked out by Thuillier in
his thesis [Thu05]. Thuillier begins by defining harmonic functions as certain piecewise
linear functions satisfying a balancing condition; see [Thu05, §2.3] or 3.2. He then
defines a subharmonic function to be an upper semicontinuous function u: X — RU
{—o0} such that, for every strictly affinoid domain U C X and every harmonic function
h on U such that u < h on dU, we have u < h on U. Thuillier shows that subharmonic
functions on smooth non-Archimedean curves satisfy the properties one would expect,
in analogy to the complex case.

In higher dimensions, it is not completely clear yet what is the best definition for
plurisubharmonic functions. There is the global approach by Zhang [Zha95], who de-
fines a semipositive metric on a line bundle L over a projective k-variety X to be the
uniform limit of metrics induced by nef models. This approach is used in Arakelov ge-
ometry for various arithmetic applications. For an ample class 6 on X, Boucksom and
Jonsson [BJ22] give a far reaching global pluripotential theory on a projective variety
over a trivially valued field. Some parts work for any non-Archimedean field, at least in
residue characteristic zero. These psh functions might be singular, and the definition uses
decreasing limits of semipositive model functions as in Zhang’s approach. Chambert-Loir
and Ducros [CD25] have posted a second version of their work in which they give a new
definition of psh functions which is functorial and is based on a transfinite regularization
process.

In all of the above approaches, a maximum principle for plurisubharmonic functions
is missing. In this paper, we propose another class of psh functions called classically
plurisubharmonic functions in close analogy to the complex case. The definition is local,
the functions are upper semicontinuous, and we will show that properties (1)-(4) are
satisfied. It will be clear that classically psh functions form a maximal class of reasonable
plurisubharmonic functions that is compatible with Thuillier’s definition for curves. In
particular, the psh functions from the above are classically psh (see 1.2 below).

To get regularization by smooth psh functions in the sense of Chambert-Loir and Ducros
or to define a Monge-Ampere measure for psh functions, additional hypotheses as in
[CD25] might be needed, but that is not the subject of this paper.

1.1. Subharmonic functions on arbitrary k-analytic curves. In Section 3, we define
subharmonic functions on any k-analytic curve X to be the elements of the following
subsheaf of the sheaf of upper semicontinuous functions on X with range [—00, 00).
It is the smallest subsheaf that is functorial with respect to pullback, stable under base
change, and agrees with Thuillier’s subharmonic functions on smooth k-analytic curves.
We will show in Proposition 3.5 that subharmonic functions satisfy the properties (1)—(3)
as in the complex case, and the local maximum principle on the interior Int(X) = X \ 9X.

1.2. Plurisubharmonic functions on k-analytic spaces. We define classically plurisub-
harmonic functions on k-analytic spaces as the elements of the smallest subsheaf of the
sheaf of upper semicontinuous functions with range [—00, 00) that is functorial with
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respect to pullback, stable under base change, and agrees with the above defined sheaf
of subharmonic functions on k-analytic curves. In Section 4, we will show that classically
psh functions satisfy properties (1)-(3).

We use the terminology classically psh to distinguish from the psh functions introduced
by Chambert-Loir and Ducros in [CD25]. Note that psh functions are classically psh.
Indeed, psh functions are upper semi-continuous and the definition is functorial, so we
are reduced to the case of a smooth analytic curve C. We have to see that a psh function
is subharmonic. By base change, we may assume that k is algebraically closed and non-
trivially valued, see Proposition 3.5(7). Since subharmonic functions are stable under
decreasing limits, and the psh functions are defined by a transfinite regularization process
from smooth psh functions, it is enough to show that a smooth psh function on C is
subharmonic. This follows from a result of Wanner [Wan19, Theorem 4.7].

1.3. Plurisubharmonic R-PL functions. For an R-piecewise linear function h: X — R
on a good strictly k-analytic space over a non-trivially valued field k, we have studied the
notion of semipositivity in the paper [GR25]. This notion is a local analytic version of
the global semipositive metrics introduced by Zhang [Zha95] which are induced by nef
models. We show in Theorem 4.3 that an R-PL function h is semipositive if and only if h
is classically psh.

1.4. Connectivity by curves. In Theorem 5.4, we show that two points x,y of a con-
nected k-analytic space X can be connected by analytic curves (assumed to be compact
and defined over a non-Archimedean field extension of k). If X = @}, then we even show
that x, y can be connected by overconvergent curves, which means roughly speaking that
we can connect them with the interiors of compact curves. We refer to Section 5 for the
precise definitions. The proof of Theorem 5.4 is inspired by Berkovich’s proof [Ber90,
§3.2] showing that a connected k-analytic space is pathwise connected. However, we
have to choose different paths, as the ones in ibid are not analytic curves. This result is
related to [dJ95, Proposition 6.1.1] and [Ber07, Theorem 4.1.1] (see the discussion after
the statement of Theorem 5.4 for more details).

Theorem 1.5 (Local Maximum Principle). Let X be a k-analytic space, and let u be a
classically psh function on X. If u has a local maximum on x € Int(X), then u is locally
constant at x.

This will be shown in Theorem 6.1. For the proof, one may assume that /X = §;
then we reduce the claim to the local maximum principle for k-analytic curves using
connectivity by overconvergent curves.

1.6. Global maximum principle for affinoids. Berkovich has shown [Ber90, Propo-
sition 2.4.4] that a k-affinoid space X = .#(.«/) has a Shilov boundary, i.e. there is a
smallest subset I' of X such that

max|f (x)| = max|f (x)|

forall f € .. The Shilov boundary is finite and can be described rather explicitly. Ducros
has shown that the relative boundary dX is parametrized by analytic spaces defined over
non-Archimedean extension fields. An inductive procedure leads us to a stratification of



4 W. GUBLER AND J. RABINOFF

0X; we will show in Lemma 6.3 that the minimal strata precisely make up the Shilov
boundary of X. Using this fact, we deduce rather easily the following global maximum
principle from the local maximum principle (Theorem 6.4).

Theorem 1.7. A classically psh function on a k-affinoid space X attains its maximum on
the Shilov boundary of X.

As an application, we will show in Theorem 6.5 that a pointwise limit u of a net of
classically psh functions is classically psh if u is upper semicontinuous.

1.8. Pluriharmonic functions. As in the complex case, a function u: X — R on the k-
analytic space X is called pluriharmonic if u and —u are plurisubharmonic. We study
pluriharmonic functions in Section 7. We will deduce from the above properties of psh
functions that pluriharmonic functions form a sheaf of R-vector spaces, they are closed
under local uniform limits (even pointwise limits if the limit is a continuous real function),
they are stable under base extension and functorial with respect to pullbacks, and they
satisfy the local maximum principle. As a consequence of the global maximum principle
for k-affinoids, we will the following finiteness result in Theorem 7.4.

Theorem 1.9. The set of pluriharmonic functions on a quasicompact k-analytic space is a
finite-dimensional real vector space.

At the end of Section 7, we will see that under certain regularity assumptions on the
k-analytic space X, pluriharmonic functions are R-piecewise linear. We do not know if
this is true without the regularity assumptions.

1.10. Acknowledgments. We thank Michael Termkin for hinting us to the crucial ref-
erence for Lemma 2.12. We also thank Vladimir Berkovich, Mattias Jonsson, and Alex
Youcis for comments on an earlier draft of the paper. We are very grateful to a referee of
[GR25] for hinting us to Theorem 6.5.

2. PRELIMINARIES

In this preliminary section, we gather the foundations used in this paper. While 2.1—
2.9 and the notion of the relative boundary in 2.11 are crucial for the whole paper, the
other subsections can be read later when we refer to them.

2.1. General notation and conventions. In this paper, k will always denote a non-
Archimedean field, that is, a field k equipped with a non-Archimedean complete absolute
value | |: k — R, which may be trivial.

The set of natural numbers N includes 0. We allow equality in a set-theoretic inclusion
S c T. For an abelian group P, let P, := P ®, A. For a ring A, let A* be the group of
invertible elements.

A topological space is called compact if it is quasi-compact and Hausdorff.

2.2. Ground field and extensions. The valuation ring of k is denoted k° := {a € k |
|a| < 1}, its unique maximal ideal is k*° := {a € k | |a|] < 1}, and its residue field is
k= k° /k°°. An analytic extension field is a non-Archimedean field k€’ endowed with an
isometric embedding k < k’. For analytic field extensions k’ and k” of k, there is a joint
analytic field extension F of k’ and of k”: see 2.8.
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2.3. Affinoid algebras. Consider the polynomial ring k[T,,..., T,] over k. For a col-

lection of weights r4,...,r, € R.,, the weighted Gauss norm on k[T;,...,T,] is given on
f = Z)LGN" aATA by

— M veopin

I£1l; = max|ay|ry™ -~

We denote by k(r;'T;,...,r;'T,) the completion of k[T;,...,T,] with respect to the
weighted Gauss norm. A k-affinoid algebra is a Banach algebra .o/ over k isomorphic
as a k-algebra to k(r;'T,,...,r'T,)/I for some n € N and for some (closed) ideal I
of k{r_ 'T,..., rn_1 T,), such that the norm of ./ is equivalent to the residue norm on

k(r;'Ty,...,r'T,)/I. If we can choose all r; = 1, then ./ is called a strictly k-affinoid
algebra.

2.4. Affinoid spaces. We denote by .# (.« ) the Berkovich spectrum of a k-affinoid alge-
bra .. It is the set of bounded multiplicative seminorms p on .« with p(1) = 1. We
usually denote the points of X = # (.« ) by x instead of p, and we write |f (x)| instead of
p(f) for f € .o/. We endow X with the topology generated by the functions (|f (-)|);e.y-
Then X is a compact space endowed with a canonical sheaf of rings &, which we call
a k-affinoid space. If .o/ is strictly k-affinoid, then . (.«/) is called a strictly k-affinoid
space. See [Ber90] for details.

The Shilov boundary of a k-affinoid space X = .#(.«/) is the unique minimal subset T
of X such that

max If ()l = max Lf ()l

forall f € .«&f. A k-affinoid space has a finite Shilov boundary by [ Ber90, Corollary 2.4.5].
The supremum seminorm | |y, on X = .#(.¢/) is used to define the k°-algebra .&/° :=
{f € & | |flsp < 1}, its ideal of topologically nilpotent elements .&/*° := {f € .o |

|f lsup < 1}, and the canonical reduction o =] A

2.5. Non-archimedean analytic spaces. The k-affinoid spaces form the building blocks
for k-analytic spaces. Roughly speaking, a k-analytic space X is given by an atlas of
compact charts formed by k-affinoid spaces. We refer to [Ber93, §1.2] for the precise
definition of the category of k-analytic spaces and properties. If we can use strictly k-
affinoid spaces for the charts of X, then we call X a strictly k-analytic space. A k-analytic
space X is called good if every x € X has a k-affinoid neighborhood. These were the
spaces considered in [Ber90].

2.6. Balls and discs. We call B" := .# (k(T, ..., T,)) the closed unit ball of dimension n.
The open unit ball is the open subset B of B" given by
Bl :={x €X||T;(x)| <1,...,[T,(x)| <1}.

If n = 1, then we get the closed unit disc B! and the open unit disc Bi. The topology of
B' can be described explicitly in terms of closed discs B'(x, p) and open discs B! (x, p)
with center x and radius p, as explained in Appendix A.2.
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2.7. Grothendieck topology and fibers. For a k-analytic space X, we will also consider
the G-topology generated by the analytic domains of X, as described in [Ber93, §1.3]. We
denote this space by X to emphasize the use of this Grothendieck topology. For strictly
k-analytic spaces, we often use the G-topology generated by the strictly analytic domains
instead: see [Ber93, §1.6]. In either case, the space X has a well-behaved sheaf of rings
Ox.. f V= _#(<) is an affinoid domain of X, then we have 0y (V) = .&/. For x € X,
we denote by 5(x) the completed residue field of the local ring 0 _, with respect to
the valuation on &y_,/m, induced by the norm corresponding to x. If V is any analytic
domain in X and if x € V, then s (x) is the same whether we consider x as belonging
to V (which is itself a k-analytic space), or to X. We call x € X a rig-point if 7#(x) is a
finite extension of k.

If p: Y — X is a morphism, then the fiber p~!(x) over x € X is an s#(x)-analytic
space, and the underlying topological space has the induced topology [Ber93, §1.4].

2.8. Fiber products. The category of k-analytic spaces admits fiber products by [Ber93,
§1.4]. For analytic spaces X,Y over a k-analytic space S, we denote the fiber product by
X xgY. Given x € X and y € Y over the same point s € S, there always exists z € X X, Y
mapping to x and to y with respect to the canonical projections [Duc18, 1.2.13]. For
convenience, we repeat the argument. The completed tensor product 5 (x)® #57€ ()
contains J#(x) ® ) #(y) by a result of Gruson [Gru66, §3.2 Théoréme 1(4)], so
H(X)® (7€ (y) # 0. The Berkovich spectrum of any nonzero Banach ring is nonempty
[Ber90, Theorem 1.2.1], and any 2’ € //t(%(x)@%)(s)%(y)) induces a point z € X x4 Y
mapping to x and y. Note that »#(z) is a simultaneous analytic extension field of 5#(x)
and of s#(y).

Since Gruson’s result holds for Banach algebras over a non-Archimedean field, the
same argument shows that for two analytic field extensions of k, there is a joint analytic
extension of both.

2.9. Extension of scalars. Let k’/k be an an analytic extension field. Then there is a
base extension functor (-),, which associates to a k-analytic space X a k’-analytic space
X, given on a k-affinoid space X = .#(.</) by the k’-affinoid space X,, = #(.o/®,k’)
[Ber90, §1.4]. We denote by 7,/ : X;» — X the structure map, which is closed and
surjective by [GRW17, Lemma 2.19], [Duc24, (3.1.1.2)].

2.10. The Shilov section. For r = (ry,...,r,) € RL, we consider the k-affinoid do-

main in the closed polydisc # (k(r;'Ty,...,rT,)) given by the equations |T;(x)| =r},
j =1,...,n. The corresponding k-affinoid algebra is denoted by k,; it consists of the
Laurent series f = Y., . a,T* such that a,r* — 0 for |A| —» oco. The k-affinoid al-
gebra ./ (k,) has a unique Shilov boundary point equal to the weighted Gauss point
n, € M(k(r['Ty,...,r'T,)) given by the weighted Gauss norm || ||, from 2.3. If

ri,...,r, induce linearly independent elements in the Q-vector space R.,/+/|k*|, then k,
is a non-Archimedean field; it follows that k, = >#(n,). For every k-affinoid algebra .«¢,
there is always such an r such that ./ ®k, is a strictly k,-affinoid algebra. See [Ber90,
pp. 21-22].
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For any k-analytic space X and r € R , the structure map 7, : X; — X has a canon-
ical section o: X — X, mapping x € X to the unique Shilov boundary point of the fiber
n;rl/k(x) = M(A#(x)®k,) = M(#(x),) (which is the weighted Gauss point 1,). We
call o the Shilov section. The Shilov section is continuous: see [Ber90, Lemma 3.2.2(i) ],

[Ducl8, 1.2.16].

2.11. Relative boundary. An important notion in this paper is that of the relative bound-
ary of a morphism ¢ : X — Y of k-analytic spaces. This is a closed subset of X which we
denote by (X /Y). We will not give the details of this definition, but let us try to explain
the literature on the subject. In [Ber90, §2.5], Berkovich defines the relative boundary
(X /Y) for k-affinoid spaces X and Y. Then in [Ber90, §3.1], he generalizes d(X/Y) for
good k-analytic spaces using that all points of X and Y have k-affinoid neighborhoods.
Berkovich calls ¢ closed if (X /Y) = 0. Berkovich defines d(X/Y) for arbitrary k-analytic
spaces in [Ber93, 1.5.3(ii)], as follows. A morphism ¢ is closed if for every morphism
Y’ — Y from a good k-analytic space Y’, the fiber product X’ := X x, Y’ is good and the
canonical morphism X’ — Y’ is closed in the previous sense. Finally in [Ber93, Defini-
tion 1.5.4], a point x € X is defined to be in Int(X/Y) if x has an open neighborhood U
such that ¢ induces a closed morphism U — Y in the above sense. We refer to [Tem15,
Definition 4.2.4.1] for a more explicit equivalent definition of (X /Y ). Note that in this
paper, we will use the notion closed map in the usual topological sense meaning that it
maps closed sets to closed sets. This is different from Berkovich’s terminology.

The complement Int(X /Y) := X \ d(X/Y) is called the relative interior. We will usually
apply this in the case Y = .# (k), in which case we call X = d(X/.# (k)) the boundary
of X and Int(X) := X \ X the interior. If dX = (3, we say that X boundaryless. A bound-
aryless space is good by definition. Note that Berkovich calls boundaryless k-analytic
spaces closed.

We list here some properties of the boundary and interior which we will use throughout
the paper:

(1) A point x € X is contained in Int(X /Y) if and only if there is an open neighbor-
hood U of x such that Int(U/Y) = U: this is part of the above definition.

(2) If p: X — Y is finite, then Int(X/Y) = X [Ber93, Example 1.5.3(iii) ].

(3) If X is an analytic domain in Y, then Int(X/Y) is the topological interior of X in
Y [Ber93, Proposition 1.5.5()].

@ xSy A S are morphisms of k-analytic spaces, then
(2.11.1) Int(X/Y)N ¢ Int(Y/S) C Int(X/S)

[Ber93, Proposition 1.5.5(ii)], with equality if v is locally separated [Tem04,
Corollary 5.7]. Taking S = .# (k), this becomes

(2.11.2) Int(X/Y) N ¢t Int(Y) C Int(X).
(5) If k’/k is an analytic extension field, then

n;}/k Int(X/Y) C Int(X,./Y})
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[Ber93, Proposition 1.5.5(iii) ]. Taking Y = .# (k), this becomes
Ty Int(X) € Int(X;).

For convenience, we restate these properties in terms of the relative boundary:
(1) A point x € X is contained in d(X/Y) if and only if d(U/Y) # @ for every open
neighborhood U of x.
(2) If ¢ is finite, then 3(X/Y) = 0.
(3") If X is an analytic domain in Y, then d(X/Y) is the topological boundary of X
inY.
@) IfX Sy LA S are morphisms of k-analytic spaces, then
(2.11.3) 2(X/S)ca(X/Y)uypH(a(Y/S)),
with equality if 1) is locally separated. Taking S = .# (k), this becomes
(2.11.4) 0X CA(X/Y)Up1(aY).
(5") If k’/k is an analytic extension field, then

0(X /Y C n;,l/ka(X/Y).

Taking Y = _# (k), this becomes

OXyo C T 0X.

We will need the following lemma, which is a consequence of deep results in [CT21] in
general, although it has an elementary proof for good spaces.

Lemma 2.12. If X is a k-analytic space and k’/k is an analytic field extension, then
Tck’/k(an’) = 3X

Proof. We have m,,(9X;,) C X by 2.11(5). Let x € dX, and let U C X be a compact
neighborhood of x. We claim that x € dU. If not, then there is an open neighborhood
V of x in U such that dV =@ by 2.11(1"). If V' C V is a smaller open neighborhood of
x in X, then dV’ = () as well by 2.11(3") and by (2.11.4) as applied to V' — V — # (k).
Thus we may assume that V is open in X, which implies by 2.11(1) that x € Int(X), a
contradiction. Hence x € dU. If x’ € n;,l/k(x), then x’ € dU,, if and only if x’ € 0X,,
for the same reason. We need to show n;,l/k(x) N dX, # B, so we may replace X by U to
assume that X is compact. In this case, the closed subset dX;, is compact; suppose that
it is disjoint from n;,l/k(x). Then 7, (0X}/) is a closed subset of X not containing x, so

there exists an open neighborhood V of x such that V,, = nk,l/k(V) C Int(X}/). This means

that dV,, = @ by 2.11(3,4). But x € 8V, and boundarylessness can be checked after
extension of scalars by [CT21, Theorem 11.5]. This contradiction proves the claim. [J

2.13. A k-analytic space X is called rig-smooth at x € X if it is flat (in the sense of
[Ducl18]) and if the sheaf of Kéhler differentials 2, (considered on the G-topology) is
free at x of rank equal to the dimension of X at y. We call X smooth if it is rig-smooth
and boundaryless. We refer to [Duc18, Chapter 5] for a discussion (note that rig-smooth
is called quasi-smooth there) and comparison to other definitions.
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2.14. Models and formal geometry. A quasi-compact admissible formal scheme over
k° is a quasi-compact formal scheme X over k° with an open covering by affine formal
schemes Spf(A) for k°-algebras A which are topologically of finite type and flat over k°.
The generic fiber X, of X is the strictly k-analytic space obtained by gluing the Berkovich

spectra (A ®,. k), and the special fiber X, is the scheme over k obtained by gluing the
affine schemes Spec(A ®,. k).

Definition 2.15. A formal k°-model X for a quasi-compact strictly k-analytic space X is a
quasi-compact admissible formal scheme X over k° with an identification X, = X.

In the above setting, there is a canonical reduction map red,: X — X, which is surjec-
tive and anticontinuous [GRW16, Section 2]. We call x € X a divisorial point associated
to the model X if red(x) is a generic point of the special fiber X,. Note that the set of
divisorial points is finite: see [GM19, Appendix A]. In ibid, the valuation on k is assumed
to be non-trivial, but this finiteness also holds in the trivially valued case as then X, is
just the analytification of the special fiber and the generic points of the special fiber have
a unique preimage under the reduction.

2.16. PL functions. We will assume k is non-trivially valued when we discuss PL func-
tions. Let A be a subgroup of R which is either divisible or equal to Z. We consider a
good, strictly k-analytic space X. A function h: X — R is called A-piecewise linear or
A-PL if G-locally we have h = >’ jA;log|f;| for finitely many A; € A and invertible ana-
lytic functions f;. Here we use the G-topology of X generated by the strictly k-analytic
domains. We refer to [GJR21, Section 5] for more on A-PL functions.

2.17. Reduction of germs. For a good, strictly k-analytic space X over a non-trivially
valued field, Temkin [Tem0O] introduced the reduction of the germ (X,x) at x € X as
an open subset of a Zariski-Riemann space P g, of 5(x)/k. Roughly speaking, it

is the projective limit of all canonical reductions Spec(.«/) where .#(.¢/) ranges over
all k-affinoid neighborhoods of x. The germ (X, x) is naturally a quasicompact locally
ringed space. See also [CD12, Section 6.1] for an excellent summary. An R-PL function
h: X — Rinduces a residue line bundle L(h) € Pic(X, x)g. This was introduced in [CD12],
and is explained in [GJR21, Section 6]. We call h semipositive at x if L(h) is nef in the
sense of [GJR21, Section 7]. A semipositive R-PL function is semipositive at all x € X.

2.18. Graded reduction. While the reduction in 2.17 works well for (good) strictly k-
analytic spaces, this concept does not fit very well for non-strictly k-analytic spaces or
in the trivially valued case. To handle the general case, Temkin introduced [Tem04] the
graded reduction of the germ (X, x). We need it only for Lemma 6.3, so we introduce
here only the graded reduction of a k-algebra A endowed with a multiplicative seminorm
p. In our applications, the algebra A will be either a k-affinoid algebra endowed with
| |sup OF the completed residue field s#(x) in a point x of a k-analytic space endowed
with its canonical absolute value. For r € R, we set

A :={a€A|p(a)<r} and A~ :={a€A|p(a)<r}.
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Then the graded residue field of A is given by
A= P Asr/AT

re€R.

We refer to [Tem04] for properties of this functorial construction.

3. SUBHARMONIC FUNCTIONS ON ANALYTIC CURVES

In this section, we generalize Thuillier’s theory [ ThuO5 ] of subharmonic functions from
smooth strictly analytic curves to arbitrary k-analytic curves.

3.1 (k-Analytic Curves). By a k-analytic curve we mean a separated k-analytic space of
pure dimension 1. We gather the following facts about k-analytic curves:

(1) A k-analytic curve is good, i.e., every point has an affinoid neighborhood. [Duc24,
Proposition 3.3.7]

(2) A k-analytic curve is paracompact. [Duc24, Théoreme 4.5.10]

(3) If X is an affinoid k-analytic curve, then dX coincides with the Shilov boundary
of X. [Thu05, 2.1.2]

An analytic domain in a k-analytic curve (for example, an open subset) is again a k-
analytic curve.

3.2 (Thuillier’s Harmonic Functions). Thuillier [Thu05, §2.3] defines a sheaf of harmonic
functions on a smooth, strictly k-analytic curve for a non-trivially valued k, roughly as
follows. If X is affinoid, then a continuous function h: X — R is harmonic if, after passing
to a finite, separable field extension, it coincides with the composition of a harmonic
function on a skeleton of X (in the sense of graph theory) with the retraction to the
skeleton. If X is smooth, then a harmonic function on an open subset of X is defined to be
a continuous function whose restriction to every strictly affinoid subdomain is harmonic.

3.3 (Thuillier’s Subharmonic Functions). For a non-trivally valued k, Thuillier [Thu05,
Définition 3.1.5] defines a subharmonic function on a smooth, strictly k-analytic curve X
to be an upper semicontinuous function u: X — RU {—oo} that is not identically —oco
on any connected component of X and that satisfies the following property: for every
strictly k-affinoid domain U C X and every harmonic function h: U = R, ifu <h on dU
thenu <honU.

Now we extend this definition to the case of non-smooth curves. The idea is that a
function should be subharmonic if it pulls back to a subharmonic function along any
morphism from a smooth curve. However, an inseparable curve over an imperfect field
does not admit any non-constant morphisms from a smooth curve, so one has to allow
an extension of scalars as well. We also consider the constant function —oo to be sub-
harmonic, following Demailly [Dem85] in the complex case.

Definition 3.4 (Subharmonic functions). Let X be a k-analytic curve and let u: X —
RU {—o0} be an upper semicontinuous function. We say that u is subharmonic provided
that, for every non-trivially valued analytic extension field k’/k, every smooth, connected,
strictly k’-analytic curve Y, and every morphism Y — X,,, the composition

T/ [k

Y — X — X — RU{—00}
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is either subharmonic on Y in the sense of [ Thu05, Définition 3.1.5], or is identically —co.

3.4.1. If X is a smooth, connected, strictly k-analytic curve over a non-trivially valued k,
then an upper semicontinuous function u: X — RU {—0o0} is subharmonic in our sense
if and only if it is either subharmonic in Thuillier’s sense or is identically —oo. Indeed, if
u is subharmonic in our sense then one can take k = k" and Y = X to see that it is either
subharmonic in Thuillier’s sense or is identically —oo. Conversely, if u is identically —oo
then it is clearly subharmonic in our sense, and if u is subharmonic in Thuillier’s sense
then it is subharmonic in our sense by [ ThuO5, Proposition 3.1.14 and Corollaire 3.4.5].

3.4.2. As a special case of (3.4.1), if X is a smooth, connected, strictly k-analytic curve
over a non-trivially valued k, then a function u: X — R (taking finite values) is subhar-
monic in our sense if and only if it is subharmonic in Thuillier’s sense.

Here we collect the basic properties of subharmonic functions, which we will prove
over the course of this section.

Proposition 3.5. Let X be a k-analytic curve and let u: X — R U {—oo} be an upper
semicontinuous function.

(1) (Sheafiness) The subharmonic functions form a sheaf on X.

(2) (Analytic functions) If f € ['(X, 0y) then log|f| : X — RU{—o00} is subharmonic.

(3) (Boundaries) If u is subharmonic on Int(X), then u is subharmonic on X.

(4) (Cone Property) If u;,u,: X — RU{—00} are subharmonic and A,, A, € Ry then
Aquq + Ayu, and max{u,,u,} are subharmonic.

(5) (Limits) The infimum of a decreasing net of subharmonic functions is subharmonic.

(6) (Maximum Principle) If u is subharmonic and u attains a local maximum at x €
Int(X), then u is constant in a neighborhood of x.

(7) (Extension of scalars) Let k’/k be an analytic extension field. Then u is subharmonic
if and only if u o 1y . : Xy — RU {00} is subharmonic.

(8) (Functoriality) Let Y be a k-analytic curve and let f: Y — X be a morphism. If u
is subharmonic then u o f is subharmonic, and the converse holds if f is finite and

surjective.
(9) (Finite Values) If u is subharmonic and u(x) = —oo for a non-rig-point x € X,
then u = —o0 on the irreducible component of Int(X) U {x} containing x.

Let us make some remarks regarding the content of Proposition 3.5.

3.5.1. If U c X is an open subset then U is again a k-analytic curve, so it makes sense
to speak of subharmonic functions on U. It is immediate from the definition that a sub-
harmonic function on X restricts to a subharmonic function on U. Hence subharmonic
functions form a presheaf on X. Proposition 3.5(1) asserts that this presheaf is a sheaf.

3.5.2. The maximum principle (Proposition 3.5(6)) is [Thu05, Proposition 3.4.10] in the
smooth, strictly analytic case.

3.5.3. In the situation of Proposition 3.5(7), it is immediate from Definition 3.4 that
u o Ty is subharmonic when u is subharmonic. This is the difficult direction in the
smooth, strictly analytic case: see [Thu05, Corollaire 3.4.5]. This result is hidden in the
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fact that Definition 3.4 essentially recovers Thuillier’s definition of subharmonicity in that
case 3.4.1.

3.5.4. In the situation of Proposition 3.5(8), it is immediate from Definition 3.4 that uo f
is subharmonic when u is subharmonic. The remark in 3.5.3 applies to a lesser extent in
this case: see [Thu05, Proposition 3.1.14].

3.5.5. Forany x € X, the subset Int(X )U{x} is open in X . This is obvious if x € Int(X), and
if x € X then it follows from the fact that X is discrete in X. In particular, Int(X) U {x}
is again a k-analytic curve, so it makes sense to speak of its irreducible components
in Proposition 3.5(9). Irreducible components can only meet at rig-points (their inter-
sections are Zariski-closed), so a non-rig-point x is contained in a unique irreducible
component of Int(X) U {x}; this is implicit in Proposition 3.5(9).

3.5.6. Proposition 3.5(9) implies that if u is subharmonic and u(x) = —oo for a non-rig-
point x € X, then u = —o0 in a neighborhood of x.

3.6. In order to extend Thuillier’s results, we will pass from a k-analytic curve to a
smooth, strictly k-analytic curve in four steps:

(1) Extend scalars to a field as in 2.10 to make the curve strictly analytic.

(2) If char(k) = p, then extend scalars to the completion of the perfect closure kP .
(3) Replace the analytic curve by the underlying reduced curve.

(4) Pass to the interior of the normalization, which is smooth (see 2.13).

We begin with some lemmas about this process.

Lemma 3.7. Suppose that char(k) = p > 0. Let k’ be the completion of kP . Then k' is
perfect, and if X is a k-analytic space then 1, ,: Xy — X is a homeomorphism such that

Proof. We leave it as an exercise for the reader to verify that k’ is perfect. The fact that
Tk is @ homeomorphism is [Duc09, Remarque 0.5], and the assertion about boundaries
is Lemma 2.12. O

We make the following observation to mirror Lemma 3.7. Its proof is immediate.

Lemma 3.8. Let X be a strictly k-analytic space and let v: X,.4 — X be the inclusion of the
underlying reduced space. Then v is a homeomorphism of underlying topological spaces, and
L(aXred) == aX

We refer the reader to [Ber90, before Proposition 3.1.8] for the construction of the
normalization.

Lemma 3.9. Let X be a reduced, strictly k-analytic curve and let v: X — X be its normal-
ization. Then the following hold:

(1) X is rig-smooth if k is perfect.

(2) v is an isomorphism outside of a discrete set of rig-points of X.

(3) v induces a bijection 0X — 9X.
(4) v is a topological quotient.
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(5) Let x € X, let U be an open neighborhood of x, and consider the map U = v~*(U) —
U. If U is a sufficiently small connected open neighborhood of x, then:
(@ U—Uis injective on connected components of U.
(b) U — U restricts to an isomorphism U \ v *(x) — U \ {x}.
(c) Every connected component of U intersects v~'(x).
(6) A function h: X — R is R-PL if and only if ho v is R-PL.

Proof The normalization X is locally the Berkovich spectrum of a Dedekind domain, so it
is rig-smooth when k is perfect because it is regular; this proves (1). Normalization is an
isomorphism away from codimension 1 as in algebraic geometry, which yields (2). Since
v is finite, we have X = v 1(8X) by the properties (2') and (4") of 2.11, so (3) follows
from (2) because the boundaries do not contain any rig-points. Assertion (4) was noted
in [Duc24, (3.1.3)].

Now we prove (5). Since normalization is a local construction, we may shrink X to
assume that it is normal away from x. Suppose that v !(x) = {x;,...,x,}, and choose
disjoint, connected open neighborhoods Uj,...,U’ of xy,...,x,, respectively. Let U’ =

U?:l v(U;). Since v induces an isomorphism X\ {x,..., X, } — X \ {x}, it is clear that
v }(U’) = | |_, U/. Since v is a topological quotient, we have that U’ is open, and v is
injective on each U/ by construction.

Suppose now that U C U’ is a connected open neighborhood of x. By [Ber90, Theorem
3.2.1], U is path-connected. Clearly U satisfies (a) and (b). Let U; = v }(U)N Ul.’ , so that
x; €U; and U = v }(U) = |_|?=1 U;. In order to prove (c), it is enough to show that U;
is path-connected. Let y € U; \ {x;}, and let y: [0,1] — U be a path from 7(y) to x.
We may assume that y~!(x) = {1}, so that y restricts to a path [0,1) — U \ {x}. Let
¥:[0,1) = U \ v"'(x) be the composition of ¥lj0,1) with the inverse of the isomorphism
U\ v(x)— U\ {x}. Then ¥(0) = y, so the image of ¥ is contained in U;. Extend ¥
to a function [0, 1] — U; by setting ¥(1) = x;. One checks continuity of ¥ at 1 using the
fact that an open neighborhood of x is the same as a collection of open neighborhoods
of x4,...,X,, as in the previous paragraph. This shows that U; is path-connected.

In the situation of (6), if h is R-PL then hov is R-PL by [GJR21, Lemma 5.4(1) ]. Suppose
then that h o v is R-PL. Piecewise linearity of h is local on X, and v is an isomorphism
away from a finite set of (non-normal) rig-points, so it is enough to check that h is R-PL
in a neighborhood of a single rig-point x. Let x’ € X be a preimage of x. There is a
covering of X by strictly affinoid domains on which h o v has the form Z?:l A loglfil,
where A; € R and f; € 0*. Since x’ is a rig-point, it is contained in the interior of one
of these affinoid domains, so ho v = Z?:l A;log|f;| in a neighborhood of x’. But if f is
invertible in a neighborhood of a rig-point x’, then |f| is constant on a neighborhood of
x’ (this elementary fact can be seen as a very special case of [Duc12, Theorem 3.4]). It
follows that ho v is constant in a neighborhood of x’. Suppose that v"!(x) = {x,,...,x,}.
For each i choose an open neighborhood U; of x; on which h o v is constant. As above,
U= Un v(U;) is an open neighborhood of x, and clearly h is constant, hence R-PL,

i=1
on U. [l
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Proof of Proposition 3.5(1). This follows from the corresponding fact for subharmonic
functions on smooth, strictly analytic curves [Thu05, Corollaire 3.1.13], except that one
has to be careful about where a function takes the value —oo. Suppose then that {U;}
is an open cover of X and that u: X — RU {—o0} is subharmonic on each U,. Note that
u is upper semicontinuous. Let k’/k be an analytic extension field with k’ non-trivially
valued, let Y be a smooth, connected, strictly k’-analytic curve, and let f: Y — X,, be a
morphism. Assume that u o 7y, o f #Z —00, so we must show that u o 7, o f is sub-
harmonic in Thuillier’s sense. Let U, = T (U) = (U and let V; = f7H(U)). Since u
is subharmonic on U;, the composition u o 7y o f |y, is either subharmonic in Thuillier’s
sense or is identically —oo on each connected component of Y;.

Let W; be the set of all points y € Y that admit a neighborhood on which u o 7y, o f
is subharmonic in Thuillier’s sense, and let W, be the set of all points y € Y that admit a
neighborhood on which uo 7y, 4 0 f = —00. Clearly W; and W, are open, and they cover
Y since Y is covered by the connected components of the Y;. They are disjoint because if
uo my o f is subharmonic in Thuillier’s sense on a connected neighborhood of y €Y,
then it cannot be identically —oo on any neighborhood of y [Thu05, Lemme 3.1.9].
Since Y is connected and u o 1y, o f # —00, we have Y = W;. The result now follows
from [ThuO5, Corollaire 3.1.13]. O

Proof of Proposition 3.5(2). Let f be an analytic function on X. The function |f| is con-
tinuous and hence u := log|f| is upper semicontinuous as a continuous function with
values in RU {—o0}. According to our definition of subharmonic functions, we have to
show that after base change of u with respect to an analytic field extension k’/k with k’
non-trivially valued and then pull-back to a smooth strictly k’-analytic curve, the resulting
function is subharmonic. This boils down to showing that u is subharmonic in the special
case of a smooth strictly k-analytic curve X. For this, we may assume X connected. If
f =0, then u is identically —oo and hence subharmonic in the sense of Definition 3.4. If
f is not identically zero, then the Poincaré-Lelong formula [Thu05, Proposition 3.3.15]
and the characterization in terms of positive currents [Thu05, Proposition 3.4.4] show
that u is subharmonic in the sense of Thuillier. OJ

We will use the following lemma in the proofs of Proposition 3.5(3,9). If X is a k-
analytic space and k’/k is an analytic extension field, then n;,l/k(x) = M (A (x)®.k)
has a finite Shilov boundary for any Abhyankar point x € X by [Duc24, 3.2.14]; we
denote this boundary by x.

Lemma 3.10. Let X be a k-analytic curve and let k' /k be an analytic field extension. Then
for all x € X we have (8X,,)N n;,l/k(x) = X[p)-

Proof. Replacing X by an affinoid neighborhood of x, we may assume that X = .#(.</)
is affinoid. By a result of Ducros [Ducl2, Lemme 3.1], there exists a morphism g: X —
B!(0,s) for some s € R., such that x € g~!(n,), where 1), is the maximal point of B!(0, s).
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This is discussed in detail in Section 6. Consider the commutative square

X S EEN B ,(0,s)

“k’/kl lnk’/k

X T) Bl(O,S).

Since 9B,,(0,s) contains (only) its maximal point 7, we have (g')7'(n,,) C 90X}
by (2.11.4) (which is an equality because B},(0,s) is separated). The morphism g is an
Abhyankar presentation of x in the sense of [Duc24, 3.2.12.2], so by Proposition 3.2.13
of ibid, we have xp; = (g')” (M) N nk,/k(x) c (dX)N nk,/k(x)

For the reverse inclusion, let x’ € (0X,,) N1 /k(x) and suppose that x” ¢ x;.1. Since
30X, is the Shilov boundary of X;, = % (.«/®,k"), by [Ber90, Corollary 2.4.5] there exist
f € .&/®,k’ and € > 0 such that |f| attains its maximum value at x’ and such that

{J’ € X | IfF I > 1f (X)) —5} C Xy \ Xppr)-

In particular, the restriction of f to 7

o /k(x) does not attain its maximum value on x(;,

which cannot happen. Thus x" € x4, so (0X ) N7, k(x) C Xpr- O

Proof of Proposition 3.5(3). Suppose that u is subharmonic on Int(X). Let k’/k be an
analytic extension field with k’ non-trivially valued, let Y be a smooth, connected, strictly
k’-analytic curve, and let f: Y — X, be a morphism. We must prove that u o 7}, o
f is subharmonic in Thuillier’s sense or is identically —oco. Since dY = 0, it follows
from 2.11(4) that f(Y) C Int(X},). If 7y, 0 f (V) C Int(X) then uomy, o f is subharmonic
in Thuillier’s sense or is identically —oo because u is subharmonic on Int(X). Suppose
then that m;,, o f(y) = x € 9X for some y €Y, so that f(y) € Int(X;,) N n;,l/k(x)

We claim that 7t /k(x)ﬂInt(X ) is both open and closed in Int(X,,). By [Duc24, Propo-
sition 5.3.4], if U is a connected component of 7, k(X \ {x}), then the closure of U in
X} is contained in 7, /k(X \ {x})Uxp. Let U’ be the connected component of X, \ X[,

containing U. The above shows that U is closed in U’. Since U is open in X (an analytic
space is locally connected [Ber93, Remark 1.2.4(iii) ] and hence its connected compo-
nents are open [Sta21, Lemma 04ME]), it is open in U’, so U = U’ since U’ is connected.
Hence 7 /k(X \ {x}) is a union of connected components of X;, \ x[;,;, so the same is

true of 7, /k(x) \ X7- Since X, \ X is itself a k-analytic space as X[,/ is a finite set, its
connected components are open, so we conclude that n;,l/k(x) \ X[ is open and closed
in X,/ \ xp;7. Since x € 9X, we have (m, k(x)) N 80X}, = Xy by Lemma 3.10, which
shows Int(X;,) C X \ x[,; and ﬂk,/k(x) \ Xy = ﬂk,/k(x) N Int(X,,). We conclude that
;,1/k(x) \ X1 is both open and closed in Int(X}.), as claimed.

Since Y is connected, f (V) C Int(X}/), and f(y) € Int(X;,) N7, k(x) we deduce from
the above claim that f(Y) C Int(X,, )N /k(x) Hence 7/, o f is constant, so 1oy, .0 f
is constant. It follows that u is subharmomc in Thuillier’s sense or is identically —oco. [J
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Proof of Proposition 3.5(4,5). These follow quickly from the corresponding facts for sub-
harmonic functions on smooth, strictly analytic curves [ ThuO5, Proposition 3.1.8]. [

Proof of Proposition 3.5(6). Suppose first that X is strictly k-analytic for k non-trivially
valued. If char(k) = p > 0 then let k’ be the completion of kP~ ; otherwise let k' = k.
Let X' = X, and let 7 = 7}, kX " — X, so 7 is a homeomorphism preserving boundaries
by Lemma 3.7. Let ¢: Xr’e g X " be the inclusion of the underlying reduced space and let
v: X —>X ! 4 be the normalization. Note that v and ¢ are finite, so X' = (1o v) 18X,
and hence dX’ = (motov)™1(8X). Let Y =Int(X") and let f =tov|,: Y — X’. ThenY is
smooth and strictly analytic, so uo o f is by definition either subharmonic in Thuillier’s
sense or identically —oo on every connected component of Y.

Suppose that u attains a local maximum at x € Int(X). If u(x) = —oo then u must
be constant in a neighborhood of x by semicontinuity of u. Assume then that u(x) >
—00. Both 7 and ¢ are homeomorphisms, so it suffices to show that uomwov: X/ , —
R U {—00} is constant in a neighborhood of the unique point x" € Int(X, ,) mapping to
x. Choose a connected open neighborhood U C Int(X’ ) of x” as in Lemma 3.9(5), on
which u o 7 o ¢ attains a maximum at x’. By Lemma 3.9(3), we have v }(U) C Y =
Int(X’), so uo o f is again either subharmonic in Thuillier’s sense or identically —oo
on each connected component C of v~}(U); since u(x) > —oo and C N v (x’) # @, the
former is true. The function uomo f attains its maximum on every connected component
of v~1(U), so by the maximum principle for subharmonic functions on smooth, strictly
analytic curves [Thu05, Proposition 3.1.11], the function uo 7w o f is constant on every
connected component of v~ !(U). It follows that u o 7 ot is constant on U.

Now we reduce to the strictly analytic case handled above. We may assume that X
is affinoid. As explained in 2.10, there is an analytic extension field k" = k, for some
r € RL such that X, is strictly k’-analytic. Let 0 : X — X, be the Shilov section of 7, .
Then x’ = o(x) € Int(X,,) because n;,/k(lnt(X)) C Int(X,,) by 2.11(5). It is immediate
from the definition that u o 7, is subharmonic, and it attains a local maximum at x’,
SO 10 1T, is constant in an open neighborhood U’ of x’. Then u is constant on the open
set U= o }(U). O

Proof of Proposition 3.5(7). It is immediate from the definition that subharmonicity of
u implies subharmonicity of u o 7,/ ,. Suppose then that u o 7}, is subharmonic. Let
k” /k be another analytic extension field with k” non-trivially valued, and let f: Y —
X,» be a morphism from a smooth, connected, strictly k”-analytic curve. Assume that
uo My o f #—00, so we need to show that u o 7, o f is subharmonic in Thuillier’s
sense. Let K be a non-Archimedean field that is simultaneously an analytic extension of
k" and k” 2.2, and consider the following commutative diagram:

Yo 55 X, —2 x,,
(3.10.1) l ln,(/k,, lnk,,,{
Y X X RU{—o0}.

f

ﬂ:k”/k u
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Since uo 7y, . is subharmonic, the composition uo 1y, o fx is, on each connected compo-
nent C of Yy, either subharmonic in Thuillier’s sense or identically —o0; since C surjects
onto Y [Ducl8, 1.5.6] and u o 1y o f # —00, the latter does not happen. Replacing
X by Y and k’/k by K/k”, we are reduced to showing that if X is smooth and strictly
k-analytic for k non-trivially valued and u o 7, is subharmonic in Thuillier’s sense, then
so is u.

We can do this directly using Thuillier’s definition. (The converse is the difficult di-
rection: see [ThuO5, Corollaire 3.4.5].) Let U C X be a strictly k-affinoid domain and
let h: U — R be a harmonic function such that u < h on dU. Then ho m : Uy =
rc;,l/k(U) — R is harmonic by [Thu05, Proposition 2.3.18]. We have ;. (dUy) = dU by
Lemma 2.12, so uo 7y < ho 1y on dUy . Since u o 7y is subharmonic in Thuillier’s
sense, this implies u o 7y, < ho . on Uy, sou < h on U since 7y Uy > U is
surjective. Thus u is subharmonic in Thuillier’s sense, as claimed. OJ

Proof of Proposition 3.5(8). Itisimmediate that subharmonicity of u implies subharmonic-
ity of uo f. Suppose then that f is finite and surjective and that uo f is subharmonic. Let

k’/k be an analytic extension field with k’ non-trivially valued and let g: Z — X,, be a

morphism from a smooth, connected, strictly k’-analytic curve. Suppose thatuom;, 08 #

—o0, so we need to show that u o 7, o g is subharmonic in Thuillier’s sense. Let

W =Z xy,, Yi, and consider the following commutative diagram:

w5y, &
(3.10.2) fffl r l P Jf
Z X, RU{—00}.

8 T [k u
The composition (uo f)o ;. 0 g’ is subharmonic because it is pulled back from uo f by
an extension of scalars and the morphism g’: W — Y,,. Since f is finite and surjective,
so are f’ and f” by 2.2, so we may replace X by Z and Y by W to assume X is a smooth,
connected, strictly k-analytic curve for k non-trivially valued and that u # —oo. We can
check subharmonicity of u (in Thuillier’s sense) after extending scalars as in the proof of
Proposition 3.5(7), so we may assume in addition that k is perfect.

Lett: Y,y < Y be the inclusion of the underlying reduced space, and let v: Y — Y4 be
the normalization. Since k is perfect, the normal curve Y is rig-smooth, and since ¥ — X
is finite and 0X = @ (as X is smooth), the curve Y is smooth as well: see Lemmas 3.8
and 3.9. Both ¢ and v are finite and surjective, so f ot o v: Y — X is again finite and
surjective. By Definition 3.4 (with k = k”), subharmonicity of u o f means that, on each
connected component C of Y, the function (uo f Joto v is either subharmonic in Thuillier’s
sense or is identically —oo. Since C — X is surjective (it is finite, hence it is a closed
map, and it is an open map by [Ber90, Lemma 3.2.4], so its image is all of X since X is
connected), the latter does not happen, so uo f ot o v is subharmonic in Thuillier’s sense.
Thus we replace Y by Y and f by f ot o v to assume X and Y are both smooth, and that
uo f is subharmonic in Thuillier’s sense.
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At this point, one proves that u is subharmonic in Thuillier’s sense directly from Thuil-
lier’s definition, as in the proof of Proposition 3.5(7), this time using [Thu05, Proposi-
tion 2.3.19]. The converse is the difficult direction: see [Thu05, Proposition 3.1.14]. [

We will need the following lemma in the proof of Proposition 3.5(9). (Note that
Lemma 3.11 itself follows from Proposition 3.5(9) as we have seen in 3.5.5.)

Lemma 3.11. Let X be a strictly k-analytic curve over a non-trivially valued field k and let
u: X — RU {—o0} be a subharmonic function. If x € 8X and u(x) = —o0, then u = —00
on a neighborhood of x.

Proof. If char(k) = p > 0 let k’ be the completion of k"~ , and otherwise let k' = k. Let
X' =Xy and © =7 X — X, let 1: X, < X' be the inclusion of the underlying
reduced space, and let v: X' — X!, be the normalization. Then 7 and ¢ are homeomor-
phisms preserving boundaries by Lemmas 3.7 and 3.8, and v is a boundary-preserving
isomorphism in a neighborhood of the unique point x’ € X’ lying over x by Lemma 3.9.
The composition u o 7 o ¢ o ¥ is subharmonic, so we may replace X by X’ to assume that
X is rig-smooth. After shrinking X, we may assume that X is strictly affinoid. By [Ber90,
Corollary 1.3.6], if K is the completion of an algebraic closure of k then X, — X is an
open map, and by Lemma 2.12 there is a point of X, lying over x, so we may extend
scalars to assume that k is algebraically closed.

By the semistable reduction theorem [ Thu05, Théoréme 2.3.8], there exists a semistable
(formal) model X of X. Let red: X — X, denote the reduction map, which is anti-
continuous. Let & € X, be any point. As explained in [BPR13, Theorem 4.6] (see also
[BL85, Propositions 2.2 and 2.3]), if £ is a generic point then red (&) is a single type-2
point of X; if £ is a smooth closed point then red*(£) is isomorphic to an open unit ball;
and if £ is a node then red (&) is isomorphic to an open annulus. In particular, if £ is a
closed point then red (&) is connected and open.

By [CD12, Lemme 6.5.1], the closure of { = red(x) is not proper, so { is a generic
point of X,. Let Y C X, denote its closure. Then red'(Y) is an open neighborhood of
x in X. Let £ € Y be a closed point and let U = red *(£). Then x is a limit point of U:
one can use [BPR13, Lemma 3.2], or one can see this using retraction to the skeleton
S(X) from [ThuO5, Théoreme 2.2.10]; in this case, x is a vertex of S(X), and either U
deformation retracts onto x if £ is smooth, or U contains an edge of S(X) adjacent to
x when & is a node. It follows that red *(Y) is contained in the union of {x} with all
connected components U of Int(X) having x as a limit point. We will show that u = —o0
on every such U.

We adapt the proof of [Thu05, Lemme 3.1.9]. Suppose that u Z —oo on some such
U. Then ul; is subharmonic in Thuillier’s sense as U is smooth and connected and u is
subharmonic in our sense. By [Thu05, Lemme 2.3.9], for every N € Z.,, there exists a
unique harmonic function hy : X — R such that hy(x) = —N and

_July) ifu(y)>—o0
() = {O otherwise

for every y € X \ {x}. By construction, we have u —hy < 0 on dX. By [ThuO05,
Corollaire 3.1.12], if the function u — h,, attains a local maximum at a point y € U, then



CLASSICALLY PSH AND PLURIHARMONIC FUNCTIONS ON BERKOVICH SPACES 19

u— hy takes a constant value C on U. By semicontinuity, we have

—oo =u(x)—hy(x) = limsup(u(z) —hN(z)) =C,
Zet
which is a contradiction. Thus u—h, does not attain a local maximum on U. It does attain
a maximum on the closure U, which is compact. We have U ¢ UUJX and u—hy <0 on
0X,sou—hy <0onU. Clearly —hy(x) — 00 as N — 00, so by [Thu05, Lemme 2.3.10],
we have —hy, — o0 on U. Since u < hy on U for all N, it follows thatu =—oco on U. [

Proof of Proposition 3.5(9). We replace X by Int(X)U{x} to assume that X =@ or 0X =
{x}. Replacing X by the irreducible component of X containing x (see 3.5.5), we assume
in addition that X is irreducible. Let k’ = k, /k be an analytic extension field for some
r € RY; as in 2.10 such that X, is strictly k’-analytic. Note that X;, is again irreducible:
any irreducible component of X;, is defined over a finite, separable extension of k inside
k’ [Ducl8, 1.5.6], but k is algebraically closed in k’ [Duc24, 3.2.11]. The fiber n;,l/k(x)

has a unique Shilov boundary point x’ = o(x), so by Lemma 3.10, if X = {x} then
0X,, = {x'}; of course, if X = @ then JX,, = @ as well. Replacing X by X,, and x by
x’, we may assume that X is strictly k-analytic and irreducible over a non-trivially valued
field k, and that X = {x} or X =0.

If char(k) = p > 0 let k’ be the completion of k» , and otherwise let k' = k. Let X’ =
Xy andlet =m0 X' — X, lett: X] , < X' be the inclusion of the underlying reduced

space, and let v: X’ — X!, be the normalization. Since 7 and v are homeomorphisms,
the space X , is again irreducible, so X" is connected by [Duc09, Proposition 5.16]. Since

x is not a rig-point of X, there exists a unique point x’ € X’ lying over x by Lemmas 3.7,
3.8 and 3.9. We must show that uomoroy =—00 on X’. Since uomoto v is subharmonic
by Proposition 3.5(7,8), we may replace X by X’ to assume that X is rig-smooth and
connected (and still that 9X =@ or X = {x} using the quoted lemmas again).

If X = () then X is smooth and connected, so u is either identically —oo or it is sub-
harmonic in Thuillier’s sense. The latter case is impossible when u(x) = —oo by [Thu05,
Proposition 3.4.10].

Suppose then that X is rig-smooth and connected, and that dX = {x} and u(x) = —oo.
By Lemma 3.11, there is an open neighborhood U of x on which u = —o0. Since X
is connected, every connected component of Int(X) contains x in its closure. Thus U
intersects every connected component C of Int(X). This implies that u takes the value
—o0 on a non-rig point of C, so the previous paragraph shows that u = —oc0 on C. It
follows that u = —o0 on X. U

3.12. Now we turn to harmonic functions. Let X be a smooth, strictly k-analytic curve
with k non-trivially valued and let h: X — R be a function. We claim that h is harmonic
in the sense of (3.2) if and only if h and —h are subharmonic (in our sense or Thuillier's—
see (3.4.2)). This is implicit in Thuillier’s thesis, but it requires justification. Suppose then
that h: X — Ris harmonic. Then +h are subharmonic by [Thu05, Proposition 2.3.13 and
Corollaire 3.1.12]. Conversely, suppose that +h are subharmonic. This implies that h is
continuous. Let U C X be a strictly affinoid domain. By [ThuO5, Lemme 2.3.9], there
exists a unique harmonic function h’: U — R that coincides with h on dU. By definition
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of subharmonicity, we have h < h’ on U. By the same argument as applied to —h, we see
that h = h’ on U, so that h is harmonic on U. As U was arbitrary, h is harmonic.

By 3.12, the following definition recovers Thuillier’s definition of harmonicity on a
smooth, strictly k-analytic curve, and even on a strictly affinoid rig-smooth curve us-
ing [ThuO5, Corollaire 2.3.14].

Definition 3.13 (Harmonic functions). Let X be a k-analytic curve for a possibly trivially
valued non-Archimedean field k. A function h: X — R is harmonic if h and —h are both
subharmonic.

The advantage of this definition is that the following basic properties of harmonic func-
tions follow immediately from the corresponding properties of subharmonic functions.

Proposition 3.14. Let X be a k-analytic curve and let h: X — R be a continuous function.

(1) (Sheafiness) The harmonic functions form a sheaf on X.

(2) If f €eT(X, 0;) then log|f| is harmonic.

(3) The harmonic functions on X form a real vector space.

(4) (Limits) If h is locally a uniform limit of harmonic functions, then it is harmonic.

(5) (Maximum Principle) If h is harmonic and h attains a local extremum at x € Int(X),
then h is constant in a neighborhood of x.

(6) (Extension of Scalars) Let k’/k be an analytic extension field. Then h is harmonic
if and only if h o my, . : X} — R is harmonic.

(7) (Functoriality) Let Y be a k-analytic curve and let f : Y — X be a morphism. If h is
harmonic then ho f is harmonic, and the converse holds if f is finite and surjective.

(8) (Boundaries) If h is harmonic on Int(X), then it is harmonic on X.

We will later see in Theorem 7.6 that (4) holds even for pointwise limits. The fol-
lowing proposition asserts that Definition 3.13 is equivalent to the notion of harmonicity
in [GJR21, Definition 7.2]. We assume that k is non-trivially valued as in ibid.

Proposition 3.15. Let X be a strictly k-analytic curve and let h: X — R be a continuous
function. The function h is harmonic if and only if it is R-PL and the line bundle L,(x) €
Pic(red(X, x))g defined in (2.17) is numerically trivial for every point x € X.

Proof. This is [GJR21, Proposition 15.7] in the rig-smooth case; we reduce to this case
in the usual way. If char(k) = p > 0 let k’ be the completion of k? ~, and otherwise let
k' = k. Let X’ = X®;k" and let : X" — X be the structure morphism. Let ¢: X/ , — X’
be the underlying reduced space and let v: X’ — X!, be the normalization, so that X'is
rig-smooth. Let f : X’ — X denote the composition 7w ot o .

Suppose that h is harmonic. Then h o f is harmonic by Proposition 3.14(6,7), so ho f
is R-PL and L, (x’) is numerically trivial for all x’ € X’ by the rig-smooth case. Then
h is R-PL by Lemma 3.9(6) and [GJR21, Lemma 5.3(3), Corollary 5.11], and L,(x) is
numerically trivial for all x € X by [GJR21, Proposition 7.6(1’,2’)]. Conversely, suppose
that h is R-PL and that L,(x) is numerically trivial for all x € X. The same holds for
ho f by [GJR21, Proposition 7.6(1’,2")], so ho f is harmonic by the rig-smooth case, and
hence h is harmonic by Proposition 3.14(6,7). ([l
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Remark 3.16. We still assume that X is a strictly k-analytic curve over a non-trivially
valued field k and that h: X — R is continuous. Proposition 3.15 and Proposition 3.14(6)
imply in particular that if ho ;. is harmonic for some analytic extension field k’/k, then
ho . is R-PL for any analytic extension k”/k, which is by no means obvious. Likewise,
Proposition 3.14(7) implies that if f : Y — X is finite and surjective and ho f is harmonic,
then h is R-PL, and Proposition 3.14(8) implies that if hly,x, is harmonic then h is R-PL.

4. CLASSICALLY PLURISUBHARMONIC FUNCTIONS

In this section we define the notion of a classically plurisubharmonic function. The
definition follows Definition 3.4.

Definition 4.1 (Classically Plurisubharmonic Functions). Let X be a k-analytic space and
let u: X - RU {—o0} be an upper semicontinuous function. We say that u is classically
plurisubharmonic or classically psh provided that, for every analytic extension field k’/k,
every k’-analytic curve Y, and every morphism f : Y — X, the function uom;, s of : ¥ —
R U {—o0} is subharmonic on Y in the sense of Definition 3.4.

4.1.1. Any class of psh functions should respect extension of scalars and should be stable
under pullback, so the conditions in Definition 4.1 are necessary. In complex analysis,
this condition (without the extension of scalars) is the definition of plurisubharmonicity,
which is why we call the notion “classically psh”.

4.1.2. If X is a k-analytic curve, then a function u: X — RU{—00} is classically psh if and
only if it is subharmonic. Indeed, if u is classically psh then taking k' = k and Y = X in
Definition 4.1 shows that u is subharmonic, and if u is subharmonic then it is classically
psh by Proposition 3.5(7,8).

4.1.3. In Definition 4.1, one can assume that Y is a connected, smooth, strictly k’-analytic
curve: this follows from Definition 3.4.

Classically psh functions satisfy the basic properties of subharmonic functions on curves.

Proposition 4.2. Let X be a k-analytic space.

(1) (Sheafiness) The classically psh functions form a sheaf on X.

(2) If f eT(X, O;) then log|f|: X — RU{—00} is classically psh.

(3) (Cone Property) Ifu;,u,: X = RU{—00} are classically psh and A, A, € Ry then
AUy + Ayu, and max{u,,u,} are classically psh.

(4) (Limits) The infimum of a decreasing net of classically psh functions is classically
psh. For arbitrary pointwise limits, we refer to Theorem 6.5.

(5) (Extension of Scalars) Let k’/k be an analytic extension field. A function u: X —
R U {—o0} is classically psh if and only if u o 1y, . : Xj — RU {—00} is classically
psh.

(6) (Functoriality) Let Y be a k-analytic space and let f : Y — X be a morphism. If
u: X — RU{—o0} is classically psh then uo f is classically psh, and the converse
holds if f is finite and surjective.

Proof. Properties (1,3,4) follow immediately from Proposition 3.5(1,4,5). For Proposi-
tion 4.2(2), we consider an analytic function f on X. As |f| is continuous, we deduce
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that log|f | is a continuous function with values in RU {—oco} and hence it is upper semi-
continuous. Then Proposition 4.2(2) follows from Proposition 3.5(2).

To prove Proposition 4.2(5), it is clear from the definitions that if u is classically psh,
then u o 7, is classically psh for every analytic extension field k’/k. To prove the con-
verse, we assume that k’/k is an analytic extension field and that u’ := u o 7. is a
classically psh function on X;,. Since the morphism 7,/ is closed and surjective 2.9,
it is clear that u is upper semicontinuous. Let k”/k be an analytic extension field and
let f: Y — X, be a morphism over k” from a k”-analytic curve Y. We have to show
that u o 7y, o f is subharmonic. As in the proof of Proposition 3.5(7), we consider
a simultaneous analytic extension field K of k" and k”. It follows from the above that
uo g, = u' oy is classically psh and hence u o 7y, © fx is subharmonic. We con-
clude from the commutative diagram (3.10.1) that uo 7y, © fy = U0 Ty © f © Ty iS
subharmonic and hence u o 7ty © f is subharmonic by Proposition 3.5(7).

Likewise, the proof of Proposition 4.2(6) follows the same lines as the proof of Propo-
sition 3.5(8). Again, it follows from the definitions if u is a classically psh function on X,
then u o f is a classically psh function on Y. Conversely, we assume that uo f is a clas-
sically psh function for a finite surjective morphism f: Y — X. Since finite morphisms
are proper and hence closed, we deduce from upper semicontinuity of u o f and from
surjectivity of f that u is upper semicontinuous. It remains to show that uo 7, o g is
subharmonic for any analytic extension field k’/k and any morphism g: Z — X,, from a
connected k’-analytic curve Z. Setting W := Z Xy, Y;s, we get a morphism g": W — Yy,
from f by base change with respect to f: Y,, — X, as in (3.10.2). Since uo f is classi-
cally psh, it follows from Proposition 4.2(5) that uo 7, o f' =uo f o m. ;. is classically
psh. The morphism f is finite and surjective, hence the same holds for f’. We con-
clude that the base change f”: W — Z of the morphism f” is finite and surjective. The
k’-analytic space W has irreducible components of dimension 1 and maybe isolated irre-
ducible components of dimension 0. Removing the latter, we obtain a k’-analytic curve
W' as an open and closed subset of W. Since Z is a connected k’-analytic curve and f”
is a finite surjective map from W onto Z, we get an induced finite surjective morphism
W’ — Z. Indeed, as W' is also Zariski-closed in W, we deduce from finiteness of f” that
f”(W’) is a Zariski-closed subset in Z of dimension 1 and hence f”(W') =Z as Z is a
connected k’-analytic curve. Since the inclusion W' — W is obviously finite, the com-
position W' — Z is also finite. In the following, we replace W by W', which preserves
the commutativity of the diagram (3.10.2) and has the advantage that W is a k’-analytic
curve. It follows that uo my, 0 f' o g’ = uom, ogo f”is subharmonic on W. The
morphism of k’-analytic curves f”: W — Z is finite and surjective, so we deduce from
Proposition 3.5(8) that u o 7y, © g is subharmonic. O

In the paper [GR25], we have studied semipositive R-PL functions on a good strictly
k-analytic space over a non-trivially valued non-archimedean field k. This turns out to
be the same as an R-PL function that is classically psh, as we now show.

Theorem 4.3. Suppose that the valuation on k is nontrivial. Let X be a good, strictly k-
analytic space and let h: X — R be an R-PL function. Then h is semipositive if and only if h
is classically psh.
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Proof. For x € X, an R-PL function h: X — R induces a residue line bundle L,(x) €
Pic(red(X, x))g on the reduction red(X,x) of the germ (X, x): see 2.17. Recall from
[GJR21, Definition 7.2] that h is semipositive at x € X if and only if the associated residue
line bundle L,(x) is nef. We have shown in [GR25, Proposition 3.1] that for a smooth
strictly k-analytic curve, an R-PL function is semipositive if and only if it is subharmonic.
Since semipositivity is stable under base extension and pull-back [GJR21, Proposition
7.6], we conclude that a semipositive R-PL function on X is classically psh.

The converse follows from [ GR25, Corollary 3.5], which shows that an R-PL function h
on X is semipositive if and only if there is an algebraically closed analytic extension field
F of k such that for every smooth F-analytic curve C and every morphism ¢: C — X,
we have h o ¢ semipositive. OJ

5. CONNECTIVITY BY CURVES

We will prove a maximum principle for classically psh functions by reducing to the
case of curves. For this we will need to prove that it is possible to connect a point of an
analytic space to its neighbors using analytic curves, potentially defined over large field
extensions.

Definition 5.1. Let X be a k-analytic space. An analytic curve in X is a subset I' C X
satisfying the following property: there is an analytic extension field k’/k, a compact,
separated k’-analytic space C of dimension at most 1, and a morphism ¢ : C — X,,, such
that T' = ;. 0 p(C).

An analytic curve T in X is overconvergent if there exist (k’, C, ¢) as above such that ¢
factors as

c Int(C") «—— C’

(5.1.1) \ /

where C’ is a separated k’-analytic space of dimension at most 1, and ¢’ and v are
morphisms.

5.1.2. The compactness hypothesis in Definition 5.1 is crucial. When X is Hausdorff, it
implies that if ', T” are analytic curves in X such that I UT” is connected, then TNT’ #
(the compact sets ', I are closed, so they cannot be disjoint by connectedness). However,
a non-proper compact curve has a nonempty boundary, which causes problems when
trying to reduce the maximum principle to the case of curves. This is the reason for
introducing overconvergent curves in X.

5.1.3. One can always pass to a larger analytic extension field k”/k’ in Definition 5.1.
Indeed, we have a commutative diagram

(Pk//
Ck” — Xk”

| N
X.

C —— Xy

T/ [k
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In the overconvergent case, extending scalars in (5.1.1) gives a commutative diagram

Cor —2 mt(C)y — t(Cl,) —— C,

Xy Wi

where n;,,l/k/(lnt(C’)) = Int(C"),» < Int(C;,) by 2.11(5). In particular, we may always
assume that C (and C’) are strictly k’-analytic.

We say that an analytic curve I' in X is connected if it is connected as a topological
space.

Lemma 5.2. Let X be a k-analytic space and let ' C X be an analytic curve in X.

(1) The connected components of I' are open in ' and are also analytic curves in X.

(2) If ' C X is another analytic curve in X, then T UT" is an analytic curve in X.

(3) If f : X —> Y is a morphism of k-analytic spaces, then f (T') is an analytic curvein'Y.

(4) If f: Y — X is a finite morphism of k-analytic spaces, then f~(T') is an analytic
curveinY.

(5) Let k’/k be an analytic extension field. If T is an analytic curve in X, then 1y, ;. (T")
is an analytic curve in X.

These assertions are also valid after replacing “analytic curve” with “overconvergent analytic
curve”.

Proof. In each part except (5) we fix (k, C, ¢) as in Definition 5.1 such that I' = m;, ;. ©
¢(C). If T is overconvergent then we also fix (C’, ¢’,1) as in the second part of the
definition.

(1) Let Cy,...,C, be the connected components of C, and let I; = 7, © ¢(C;). Note
that each I} is compact and connected. Hence any connected component ¥ of T is the
union of all T; that meet X. We have X = m;, o <p(|_|mi 4 Ci), which is a connected
analytic curve in X. The complement of ¥ in T is the union of all I} disjoint from X, so
that X is open and closed in I'. We conclude that the analytic curve ¥ in X is a connected
component of T.

(2) Choose (k”,D,n) as in Definition 5.1 such that I = ;. o n(D). Passing to a
common analytic extension field of k” and k” 2.2, we may assume k' = k” by 5.1.3. Then
['UT’ is the image of C U D under ¢ LI 1. The overconvergent case follows similarly by
taking disjoint unions.

(3) This is immediate from the definitions.

(4) Consider the commutative diagram

p sy, =y
gJ' O J,fk/ lf
C—— Xy = X
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in which D = C xy, Y. Then g: D — C is finite, so D is a compact, separated k’-
analytic space of dimension at most 1. Let I = m;,, o n(D). This is an analytic curve
in Y contained in f1(T'); we claim I' = f"}(T). Let x € T" and let y € f~(x). Choose
z € C such that ;0 ¢(2) = x, and let X’ = @(z). There exists y’ € Y}, such that
T n(y’) =y and fu(y’) = x’ because %(y)§%(x)%(x’) # 0 2.2. Likewise there exists
w € D such that n(w) = y” and g(w) = z; for such w we have ;. o n(w) = y, which
proves IV = f~}(T).
Suppose now that I' is overconvergent. Consider the commutative diagram
n

( v " 1

D —— Int(D’) « D’ '

C E— Il’lt(C’) < C/ 7 Xk/
Y @

- )

¥

in which D" = C’ x4, Yj,. Again D’ is a separated k’-analytic space of dimension at
most 1. The middle square is Cartesian by properties (2) and (4) of 2.11, which implies
that there is a unique morphism1’: D — Int(D’) making the left square commute. Hence
I is overconvergent as well.

(5) Choose (k”,C, ¢) as in Definition 5.1 such that I = 73 1, © ¢(C). Then

T i (T") = T jp © T o © (C) = Ty © (C)
under the identification X}, = (X;.). If I” is overconvergent then clearly ;. (I") is
overconvergent. O

Definition 5.3. We say that X is connected by curves (resp. connected by overconvergent
curves) if, for every pair of points x, y € X, there exists a connected (resp. connected and
overconvergent) analytic curve I' in X such that x,y €T.

Berkovich [Ber90, Theorem 3.2.1] proved that a connected k-analytic space is path-
connected. The paths that he constructs (or rather, a variant of these paths) are in fact
contained in analytic curves, as we will explain below. Therefore, the following fact
should be regarded as an extension of Berkovich’s theorem.

Theorem 5.4. Let X be a connected k-analytic space. Then X is connected by curves, and if
0X = () then X is connected by overconvergent curves.

This result can be found in different forms in the literature. De Jong proves in [dJ95,
Proposition 6.1.1] that any two rig-points of a strictly k-analytic space over a discretely
valued field can be connected by strictly k-affinoid curves. Berkovich proves in [Ber07,
Theorem 4.1.1] that any two rig-points in a connected, boundaryless k-analytic space
(for arbitrary k) can be connected by boundaryless k-analytic curves (of a special type).
Using some additional arguments involving base change to a larger analytic field, the
second part of our Theorem 5.4 can be derived from this result. Here we give a relatively
elementary proof that works in both cases.
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In order to prove Theorem 5.4, we construct some paths and analytic curves in k-
analytic spaces, following Berkovich. See 2.6 for the notations B", B, etc.

5.5 (Paths in B'). For x, y € B! = _#(k(T)) we let [x, y] denote the unique path from x
to y. This can be described as follows. Let m(x, y) be the maximal point of the smallest
closed ball containing x and y, and let r(x, y) be its radius. Then [x, m(x, y)] is the union
of {x} and the maximal points of all closed balls B*(x, p) containing x with radius p <
r(x,y), and likewise for [m(x, y), y]. The path [x, y] is the concatenation [x, m(x, y)]U

[m(x,y),y].

5.6 (Paths in relative balls). Let X = .#(.«/) be a k-affinoid space, let Y = X x B! =
M((T)), and let ¢ : Y — X be projection onto the first factor. For x € X and y;,y, €

¢ 1(x) we let [y;, y,] denote the unique path from y, to y, in the fiber ¢ (x) = B;ﬂx).

¢ !(x) — Y isa connected analytic curve in Y: there is a canonical

1 ~

A(x)
isomorphism ¢! (x) = (Y&, H(x)) Xy, () H (#(x)), with ¢! (x) = Y correspond-
ing to projection onto the first factor followed by the structure morphism Y ®,.#(x) — Y.

The inclusion B

5.7 (Paths to the Gauss point). Berkovich recursively uses the construction in 5.6 to
connect any point in B" to the Gauss point 1, € B". Explicitly, in the case n = 2, we
let ¢ : B> — B! denote projection onto the first factor, as above. Let o : B! — B? be the
section of ¢ sending x € B! to the Gauss point of ¢ (x), and note that o(n;) = 7,. For
x € B2, the path from x to 7 is defined to be [x, o (¢ (x))]U a([¢(x),n,]).

These paths are not suitable for proving that B" is connected by curves: the section o
is continuous, but it is not a morphism of analytic spaces, so while [ ¢(x), ;] is contained
in the analytic curve B!, its image under o is not an analytic curve in B.

5.8 (Paths to zero). Instead, we recursively define a path from a point x € B" to the
origin 0. When n = 1 this is just the path [x,0] defined in 5.5. In general, let ¢ : B" =
B" ! x Bl — B"! be the projection onto the first factor, and let o: B*! — B" be the
inclusion B"! = B" ! x {0} < B" (this is the fiber over 0 of the projection onto the second
factor B""! x B! — B'). Then o is a section of . We define [x, 0] to be the concatenation
of the path [x,o(¢(x))] from 5.6 and o ([¢(x),0]), where [¢(x),0] € B"! is defined
from the recursion.

Lemma 5.9. For any point x € B", the path [x,0] is contained in a connected analytic
curve in B". If x € B', then [x, 0] is contained in a connected, overconvergent analytic curve
in BY.
Proof. We prove both assertions by induction on n. When n = 1, the path [x, 0] is con-
tained in the connected analytic curve B!. If x € Bi then there exists p < 1 such that
[x,0] c BY(0, p). We have B'(0, p) C Int(B'(0, p")) C B! for any p’ € (p, 1), so that the
connected analytic curve B!(0, p) in B}r is overconvergent.

Suppose now that the assertion is true for B*!. Let x € B", and define ¢ : B" — B"!
and o: B! — B" as in 5.8. Let y = p(x), and let I, be a connected analytic curve
in B™! containing [y,0]. Since o is a morphism, Lemma 5.2(3) implies that o(l,)isa

connected analytic curve in B". The fiber o7 !(y) = B;t,(y) is a connected analytic curve

in B" by 5.6, and ¢'(y) U o(T,) is an analytic curve in B" by Lemma 5.2(2), which is
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connected because o(y) € ¢ }(y)N o(T,). By definition [x,0] = [x,0(y)]uo([y,0]),
which is contained in ¢ ' (y) U o(T,) because [x,o(y)] C ¢~'(y) and [y,0] C T,

Now suppose that x € B}. Then y = p(x) € Bi‘l, so by induction we can assume
that T, is overconvergent and contained in Bfl. Since x € B} we have x € (B}r) s#(y) C

B;%,(y) = ¢~ !(y), so as in the base case, we have that [x, c(y)] is contained in an overcon-

vergent, connected analytic curve in B’} of the form B;i,,(y)(O, p) C ¢ ' (y)NB! for p <1.
Then [x,0] is contained in B;t,(y)(o, p) U o(T,), which is a connected, overconvergent
curve in Bi by Lemma 5.2(2,3). OJ

Our paths [x,0] satisfy the following crucial locality lemma, which is analogous to
[Ber90, Lemma 3.2.2(ii) ] in Berkovich’s setting.

Lemma 5.10. Let y € B". For any open neighborhood U of [y,0] C B", there exists an
open neighborhood V of y such that [y’,0] c U forall y’ € V.

Proof Let X = B" !, let Y = B" = X x B!, let ¢: Y — X be the projection, and let
0:X = X x {0} — Y be the section, as defined in 5.8. By induction on n, it suffices
to prove the following statement: for every y € Y and every open neighborhood U of
[y,o(p(y))], there is an open neighborhood V of y such that [y’,o(¢(y’))] C U for all
y' ev.

We adapt the proof of [Ber90, Lemma 3.2.2(ii)] and fill in some details. Let .o/ =
k(Ty,...,Tpq),s0X = #(F)and Y = #(F(T)). Let y € Y and let x = ¢(y). We
have ¢7'(x) = A (H#(x)(T)) = B}%,(X). For the rest of this proof we use 0, to denote the
origin of this ball, i.e., 0, = o(x). The smallest closed ball in B;ﬂx)
is B}(0,, |T(y)|); let m(y, 0,) be its maximal point. We have the equalities
(5.10.1)

[y, m(y,0,)]={z € ¢7'(x) | IT(2)I < |T(y)| and |f ()| = |f ()| for all f € .&/(T)}
[m(y,0,),0,]={z € ¢7'(x) | IT(2)| < IT(y)l and |f (2)| = |f (0,)] for all f € .</(T)}

as in the proof of [Ber90, Lemma 3.2.2(ii)], and [y,0,] = [y, m(y,0,)]U[m(y,0,),0,]
by definition.
Let U be an open neighborhood of [ y,0,]in Y, so U, = UNy~*(x) is an open neighbor-

hood of [y,0, ] in B;ﬂx). The ball B;ﬁ(x) has a basis of so-called standard open sets [Ber90,

§4.2] of the form B, \ U;nlei, where B, is an open ball in B;@(X) with a rig-point as a
center and positive radius (or is all of B;ﬂx)) and the B; are disjoint closed balls in B;p(x)
contained in B,. This is made explicit in A.2, where we also see that the union of two
standard open subsets is a standard open subset. Since [y,0,] is a connected set con-
tained in a union of finitely many standard open sets inside U,, we see that [y, 0, ] has
a standard open neighborhood B, \ U;n:lBi contained in U,. Any open ball containing
0, has the form B!(0,,p) = {z | |T(2)| < p}, so we have B, = B!(0,,p) for suit-
able p > 0 (or B, = B;f(x)). Since B, contains m(y,0,), we have p > |T(y)|. Let
f; € #(x)[T] be the minimal polynomial of a rig-center of B;,. By Lemma A.3, we have
B,={z¢ B;ﬂx) | |fi(2)] < p;} for suitable p; > 0. Since B; does not contain 0, or y, we

have p; < min{|f;(y)l, |f;(0,)|}. By a density argument, we may assume f; € ./[ T ]. For

containing y and 0,
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>0, let

U'={z €Y |IT()| <IT(y)| +e¢ and Vi|f,(z)| > min{|f;,(y)], |£:(0,)]} — &}
A ={z €Y |IT@) <IT()+¢ and Vi|f,(2)| = min{|f;(y)], [f:(0,)]} —¢}.

Then A’ is a compact set containing U’. Using (5.10.1), we deduce that U’ N ¢~ (x)
is an open neighborhood of [y,0,] in ¢~'(x), which is contained in B, \ U;nlei and
hence in U for sufficiently small €. Decreasing ¢ if necessary, we may even assume that
A'Ny~1(x) c U. Then the compact set A'N(Y \ U) is disjoint from ¢ *(x), so there exists
an open neighborhood W of x such that U'N~!(W) c U. Shrinking W if necessary, we
may assume by continuity of o and using 0, = o(x) that

(5.10.2) If:(c(x)| > |f;(0,)]—e forallx’eW andalli=1,...,m.
Replacing U by U’ N ¢~ '(W), we may assume

U={z€Y |IT()|<IT(y)l+¢and Vi|f,(z)| > min{|f,(y)l, [f:(0)]} —e} n ™" (W).

Let y' € U and x’ = ¢(y’) € W, and let 0,, = o(x’). Using (5.10.1) with y’ in
place of y, we have [y’,0,,] C U because for z € [y’,0,,] we have |T(2)| < |[T(y")| <

IT(y)I+ ¢, and |£;(2)| = min{|f;,(¥")], 1£;(0,)I} > min{|f;,(¥), £;(0,)|} — € for each i; this
uses (5.10.2) for the second inequality. This proves the lemma. OJ

The proof of Theorem 5.4 requires the following lemma, which is an immediate con-
sequence of Lemma 5.2(3,5). We say that a subset ¥ C X is connected by curves if for
every pair of points x, y € X, there exists a connected analytic curve I' in X contained in
Y such that x, y € T, and likewise for overconvergent curves.

Lemma 5.11. Let X be a k-analytic space, let k’/k be an analytic field extension, let Y be
a k’-analytic space, and let f : Y — X, be a morphism. If Y is connected by curves then
Ty i © f (V') is connected by curves, and likewise for overconvergent curves.

Proof of Theorem 5.4. Let X be a connected k-analytic space. Define a relation ~ on X
by x ~ y if there exists a connected analytic curve I' in X such that x,y € I'. This is
an equivalence relation by Lemma 5.2(2), so since X is connected, it suffices to show
that equivalence classes are open. It is enough to prove that every point x € X admits a
(not necessarily open) neighborhood that is connected by curves. This is a property that
we can prove for any k-analytic space, so we no longer assume that X is connected. By
the definition of a k-analytic space in [Ber93, §1.2], the point x has a neighborhood of
the form X; U --- U X, where each X; is an affinoid domain in X that contains x. If U;
is a neighborhood of x in X; then U?zl U; is a neighborhood of x in X, so it suffices to
show that x has a neighborhood in each X; that is connected by curves. We may thus
assume that X is affinoid. There exists an analytic extension field k’/k such that X, is
strictly k’-affinoid and such that 7}, ; : X;, — X admits a continuous section o : X — X,
see [Ber90, Lemma 3.2.2(i)]. If U C X, is a neighborhood of o (x) that is connected by
curves then Lemma 5.11 implies that 7/, (U) is connected by curves; this is a neighbor-
hood of x because o 1(U) C 7, ,k(U). Hence we may assume that X is strictly k-affinoid.
Then X has finitely many irreducible components; as above, it is enough to show that
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x has a neighborhood in each irreducible component that is connected by curves, so we
may assume that X is irreducible.

Now we will prove that any irreducible, strictly k-affinoid space X is connected by
curves. We will show that for every x € X, there is a neighborhood U of x such that
x ~ x’ for all x’ € U. This is not the same thing as showing that U is connected by
curves, as the curve connecting x to x’ may leave U. However, it does imply that the
~-equivalence classes are open, which is enough because X is connected.

By the Noether normalization lemma [BGR84, Corollary 6.1.2/2], [Ber90, Corollary
2.1.16], there exists a finite, surjective morphism ¢ : X — B" for n = dim(X). For x’ € X
let y' = ¢(x’), and let ¥, be the connected component of ¢ *([y’,0]) containing x’.
Berkovich shows in the proof of [Ber90, Lemma 3.2.5] (which applies in our situation by
Lemma 5.10) that there is an open neighborhood U of x such that for all x” € U, the sets
%, and X, contain a common point of ¢ ~1(0).

By Lemma 5.9, there are connected analytic curves T, T}, in B" such that [y, 0] C T, and
[¥/,0] C T),. Let I (resp. I,) be the connected component of ga_l(Fy) (resp. cp_l(l“y,))
containing x (resp. x’). These are connected analytic curves in X by Lemma 5.2(1,4).
We have ¥, c T, and %,, C T}, so that I, N T, # (. Hence x and x’ are contained in
the connected analytic curve I, UT,, in X. Since x’ € U was arbitrary, this completes the
proof that a connected k-analytic space is connected by curves.

Now suppose that X is a connected and boundaryless k-analytic space. Define an
equivalence relation ~’ on X by x ~’ y if there exists a connected, overconvergent
analytic curve T' in X such that x,y € I'. As before, we will prove that every point
x € X admits a neighborhood that is connected by overconvergent curves, since this
implies that the ~’-equivalence classes are open. By the definition the relative interior
([Ber90, §1.5], [Tem15, §4.2.4]), any point x € X admits an affinoid neighborhood Y.
Note that x € Int(Y). Let k’/k be an analytic extension field such that Y;, is strictly
k’-analytic and 7/ : Yy — Y admits a continuous section o: Y — Y}, as before. We
have n;,l/k(lnt(Y)) C Int(Y,/) by 2.11(5), so o(x) € Int(Y;,). As in the previous case, it is
enough to find a neighborhood of o(x) in Y}, that is connected by overconvergent curves.
Hence we may assume that Y is strictly k-affinoid and x € Int(Y). Let k’/k be the com-
pletion of an algebraic closure of k. Then Y,, — Y is open by [Ber90, Corollary 1.3.6],
so it suffices to find a neighborhood of any preimage of x in Int(Y),) that is connected by
overconvergent curves by Lemma 5.11. We may therefore assume that k is algebraically
closed. Let Yy, ...,Y, be the irreducible components of Y containing x. Then x € Int(Y;)
for each i; it is enough to show that x admits a neighborhood in each Y; that is connected
by overconvergent curves, so we may assume that Y is irreducible and x € Int(Y'). Let V
be the connected component of x in Int(Y).

We will prove that V is connected by overconvergent curves. We proceed with an
argument similar to the previous case: that is, for any x € V, we will show that x and x’
are connected by an overconvergent curve in V for all x’ in a neighborhood of x. Choose
a finite, surjective morphism ¢ : Y — B". The interior of B" is the (disjoint) union of all
residue balls B’} (z,1) by [CD12, Lemme 6.5.1] (all residue balls have k-rational centers

z since k = E), and ¢ '(Int(B")) = Int(Y) by finiteness of ¢ (use 2.11(2) and (4)); thus,
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after recentering, we can assume that ¢(V) C B}. For x" € V let y’ = ¢(x’) € B and
let ,, be the connected component of ¢~"([y’,0]) containing x’. Since [y’,0] C B" we
have ¢~ !([y’,0]) C Int(Y), and since X, is connected and x’ € V we have ., C V. As
before, there exists an open neighborhood U of x in V such that &, N %, # @ for all
x' eU.

By Lemma 5.9, for any y’ € B} there is a connected, overconvergent analytic curve
I, in B} containing [y’,0]. For x’ € V mapping to y’, we let I, be the connected
component of cp_l(l“y,) containing x’, so that I',, C V for the same reason that %,, C V.
By Lemma 5.2(1,4), this I, is again a connected, overconvergent analytic curve in X.
Clearly %,, c T/, so for x’ € U we have I, N T, # 0. This completes the proof as in the
previous case. O

6. THE MAXIMUM PRINCIPLES FOR CLASSICALLY PSH FUNCTIONS

In this section, we consider a non-Archimedean field k. We will prove first that the
local maximum principle holds for classically psh functions, and then we will show a
global maximum principle in the affinoid case; more specifically, that that a classically
psh function takes its global maximum at a Shilov point.

Theorem 6.1 (Local Maximum Principle). Let X be a k-analytic space and let u be a clas-
sically psh function on X. If u has a local maximum at x € Int(X), then u is locally constant
at x.

Proof. We may replace X by a connected, Hausdorff open neighborhood of x in Int(X) to
assume that X is connected and boundaryless and that u attains a global maximum at x.
Let R =u(x). Let T be a connected, overconvergent analytic curve in X containing x. We
claim that u =R on T'. Consider the set I,_; = {z € I' | u(z) = R}. This set is closed in T’
by upper semicontinuity of u, so since I' is connected, it suffices to show that I}, _ is open
inT.

By 5.1.3, there exist an analytic extension field k’/k, a compact, separated strictly k’-
analytic space C of dimension at most 1, a separated strictly k’-analytic space C’ of dimen-
sion at most 1, and morphisms ¢: C — C’" and ¢’: C’ — X}, such that ¢(C) c Int(C’)
and 7., © (C) =T, where ¢ = ¢’ o). The composition u o 1y, o ¢’ is subharmonic
on 1-dimensional connected components of C’ because u is classically psh.

Let y € Ty, let z € C be a point lying over y, and let 2’ = 1(2) € Int(C’), so that
R=uomy 09 (") =uomy,op(z). If {z'} is a connected component of C’ then clearly
uo my; © ¢ =R in a neighborhood of z’. Otherwise, the connected component of 2’
in C’ is a strictly k’-analytic curve, in which case u o 7}, © ¢’ = R in a neighborhood
of 2z’ by Proposition 3.5(6) (here we use g’ € Int(C’)). Taking the 1-inverse image of
such a neighborhood, we see that u o 7/, © ¢ = R in a neighborhood of z. Applying
this argument to each z € (7, © ¢) (), we construct an open set V C C containing
(T © @) ' (y) such that uo i 0 |, =R.

The complement C \ V is a closed subset of the compact space C, so it is a compact
subset of C that is disjoint from (7., © ¢)~'(). Its image is a compact subset of X that
does not meet y, so there is an open neighborhood W of y such that (7, ,0¢) ' (W) C V.
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It follows that u = R on W NT'. This proves that I’,_; is open in I'. As remarked above,
this yieldsu =R on T.

Let y € X be any point. By Theorem 5.4, there is a connected, overconvergent analytic
curve I' in X containing x and y. We showed above that u =R on T, so that u(y) = R.
As y was arbitrary, we have u =R on X. U

The global maximum principle for classically psh functions involves the Shilov bound-
ary. For this, we need the following two lemmas. The first is well-known, but we were
unable to find a reference.

Lemma 6.2. Let X be a k-affinoid space of pure dimension d > 1. Then the Shilov boundary
of X is contained in the relative boundary 8X of X over k. In particular, 3X # 0.

Proof. Let k’/k be an analytic field extension such that X, is strictly affinoid. Note that
the base change morphism 7., maps 9X;, to X 2.11(5) and maps the Shilov boundary
onto the Shilov boundary [GRW17, Proposition 2.21], so we may assume that X is strictly
affinoid and k’ non-trivially valued. Choose a formal affine k°-model X of X. The interior
X \ 90X consists of the points x € X such that the closure of red,(x) in X, is proper over
the residue field k by [CD12, Lemme 6.5.1]. Since X is affine, the special fiber X; is
affine, so x € dX if and only if red,(x) is not a closed point of X,. Since d > 1, the
special fiber X, is of pure dimension d > 1, and hence the generic points of X, are not
closed. By [GM19, Proposition A.3], the divisorial points of X (i.e. the points of X which
reduce to the generic points of X,) are precisely the Shilov points of X. We conclude that
all Shilov points are in the boundary of X. U

Let X = #(.</) be an affinoid space over k of pure dimension d. By a result of Ducros
[Ducl2, Lemme 3.1], the boundary X of X can be expressed as a union of affinoid spaces
of lower dimension, defined over certain extension fields of k. We use his argument to

give a stratification of dX. Choose non-nilpotent elements g,,..., g, € .« such that the
graded reductions g7,...,g" generate the graded k°-algebra .&/°. Let r; be the spectral
radius of g;. Then for any I C {1,...,r}, we get a morphism

pr: X — B(I), x — (gi(x))ier

to the closed poly-disc B(I) =[],., B(0, r;) of dimension s = |I|. Let n® be the weighted
Gauss point of B(I) and let k; := s#(n"), which is the completion of the field of rational
functions k((t;);c;) in the variables (t;);c; with respect to the weighted Gauss valuation
for the weight (r;);c;-

Lemma 6.3. With the above notations, set X; := pI_l(n(”). By convention, we set Xy = X.
Then:

(1) X, is a k;-affinoid space of pure dimension d —s if non-empty.

(2) 09X, = Uie{l,...,r}\IXIU{i}'

(3) X; ={x € X |(g](x)),e; are algebraically independent in H°(x) over E'}.

(4) If X has pure dimension d, then the Shilov boundary of X is equal to U|I|:d X;.
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We note that the affinoid space X, is naturally homeomorphic to the fiber pl_l(n(s)) cX
in the subspace topology: see [Ber93, §1.4]. If I is non-empty, then we call X, a stratum
set for the boundary.

Proof. Since p, is a morphism between the k-affinoid spaces X and B(I) of pure dimension
d and s, respectively, and since the Gauss point n? is an Abhyankar point of B(I), we de-
duce from [Duc18, Lemma 1.5.11] that X, is a #(n")-affinoid space of pure dimension
d —s if non-empty. This proves (1).

The remaining argument is based on the following description of the boundary given
by Ducros in [Duc12, Lemme 3.1]. For any x € X = .#(.</), we get an induced character
Y: .o/ = F#(x). Then Temkin’s graded reduction of the germ (X, x) is given by [ TemO00,
§2]

red(X, x) =Pz z{¢* ()}

By definition, this is the set of graded valuations w on 52*(x) which are trivial on k
and which satisfy [°(g)|, < 1 for all g € .«¢. Using that the graded reductions of our
fixed family g,,...,g, € ./ generate the graded ’E'—algebra ./*, it is enough to check
Ilﬁ'(g)lw <1 for g =g4,...,g,. Based on Temkin’s result on graded reductions, Ducros
shows that x € X is equivalent to the existence of some i € {1,...,r} and of a graded
valuation w on #°(x) which is trivial on k* such that lY(g;)l,, > 1. Ducros shows in
his argument that this is equivalent to g’(x) € #°(x) being transcendental over k. For
i=1,...,r, he considers the morphism p;: X — B(0, r;) induced by g;. Let X; be the fiber
over the weighted Gauss point n of the closed disc B(0, r;) = # (k(r;'t)) (of radius r,).
By (1), we have that X, is a #(n®)-affinoid space of pure dimension d — 1 if non-empty.
It follows from the above that the union of all of the X; is equal to dX.

Let us summarize the construction. For each i € {1,...,r}, we define

X; = {x €X | g’(x) is transcendental over %'}.

This set might be empty. We have seen that g; defines a morphism p;: X — B(0,r;) =
M (k(r;'t)) for the Tate algebra k(r;'t) in the variable ¢, and that X; is the fiber of p;
over the weighted Gauss point nV. In any case, X; is an affinoid space over the non-
archimedean field k; := s(nY) which is the completion of k(t) with respect to the
weighted Gauss valuation for the weight r;. If X; is non-empty, then X; has pure dimen-
sion d — 1. Ducros has shown that

We prove now the claims (2)—(3) by induction on s = |I|. If s = 0, then I = § and
X, = X. Then the above description of the boundary due to Ducros proves (2) and
(3). Now assume that s > 0. We picki € I and set J := I\ {i}. As seen above, we
have that X; := pi_l(n(i)) is an affinoid space over k; = #(n¥), and we denote the
corresponding affinoid algebra by ./, :== 0(X;). Note here that k; is the completion of
k(t) with respect to the weighted Gauss norm for the weight r;. For ./, = .&/®,k;, the
same elements g,,..., g, induce generators of ch’{? as a graded E’-algebra. Note that
#(nD) is the completion of k((t;).<;) with respect to the Gauss norm for the weight
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(ry)ve; and hence also the completion of k;(r;);c; with respect to the weighted Gauss
norm for the weight (r;);c; identifying the variable t € k; with ¢;. It follows readily that
forany H C {1,...,r}, we have (X;); = X{;y as affinoid spaces over k;. Applying this
with H = J and using our induction hypothesis for X;, property (2) for the boundary of
X, = (X;), follows by induction applied to X;. The same inductive argument shows that

X is the set of points x € X; where (g;(x));; are algebraically independent over %i. We

have seen that X; is non-empty if and only if g;(x) is transcendental over k. Since t = t;
in k; satisfies p;(t) = g;, we conclude that x € X; if and only if (g;(x)),c; are algebraically

independent over k. This proves (3).

Finally, we claim that the union of the minimal strata X, for |I| = d is the Shilov
boundary of X. If d = 0, this is obious as X = Xj;. Now assume that d > 1. If x € X then
(3) shows that the graded residue field #(x)* contains the d algebraically independent
elements (g,);c; over k°. Since the reduction X in the sense of Temkin [Tem04, Section
3] is of pure dimension d (using [TemO4, Proposition 3. 1(V)] for base change to the
strictly affinoid case), we conclude that the reduction of x in X is a generic point of X.
By [Tem04, Proposition 3.3], we conclude that x is a Shilov point of X. Conversely, for
every a € ./, the function |a| takes its maximum in a Shilov point. We conclude from
Lemma 6.2 that |a| takes its maximum in X # 0. By (2), we conclude that |a| takes its
maximum in one of the strata sets X,;. By induction on the dimension d, this occurs when
|I| = d proving (4). O

We return to the setting where k is any non-Archimedean field which might be trivially
valued. We give now the global maximum principle for affinoids.

Theorem 6.4. Let h be a classically psh function on a k-affinoid space X. Then h takes its
maximum in a Shilov point of X.

An analogue for 6-psh functions on a proper scheme is in [GM19, Proposition 4.22].

Proof. By base change to a non-trivially valued analytic extension field k’/k such that X,
is strictly affinoid, and using that 7,/ maps the Shilov boundary of X;, to the Shilov
boundary of X [GRW17, Proposition 2.21], we may assume that X is strictly affinoid and
that k is non-trivially valued. Let X = | J ;X; be the partition of X into its irreducible
components. It follows from [GRW17, Proposition 2.15] that the union of the Shilov
points of all X; gives the Shilov points of X. So it is enough to prove the claim for every
X, and hence we may assume X irreducible. This will be a bit to strong for our inductive
argument later, but the argument shows that we may assume X of pure dimension d.

If d > 1, then we claim that h takes its maximum in the boundary dX. We prove this
by contradiction. It is clear that the boundary dX is the disjoint union of the boundaries
of the connected components of X, and the same holds if we replace the boundary by the
Shilov boundary, so we may assume X connected. Let M be the set of points of X where
h is maximal. We assumed that M N 8X = . Since h is continuous, it is clear that M is
a closed subset of X. We know from Theorem 6.1 that if a classically psh function takes
a (local) maximum on X \ X, then h is locally constant. This implies M open in X. As
M is non-empty and X is connected, we deduce M = X. Since dX # () as we have d > 1
(see Lemma 6.2), we get M N 3X # @, which is a contradiction.
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Let now h be a classically psh function on X. We need the description of the boundary
9X =|JX; given in Lemma 6.3, where i runs through {1,...,r} and X; = Xy, as before.
We claim by induction on d that h takes its maximum in one of the sets X; with |I| =d,
and hence in the Shilov boundary of X, which proves the theorem. If h is constant, then
this is obvious; this also settles the case d = 0. If h is non-constant, then we have seen
at the beginning of the proof that h takes its maximum in 0X, and hence in one of the
X;. Since X; is of dimension d — 1, we are done by induction as the strata sets of dX; are
strata sets of dX using Lemma 6.3. OJ

The following result was suggested by a referee of the paper [GR25]. We are very
grateful for this hint.

Theorem 6.5. Let (u;);c; be a net of classically psh functions on the k-analytic space X
which converges pointwise to an upper semicontinuous function u. Then u is classically psh.

For a sequence of semipositive R-PL functions converging pointwise to an R-PL func-
tion, the above result was shown in [GR25, Theorem 5.6]. When X is a proper algebraic
variety, this was known before ([GK19, Proposition 7.2] for uniform limits, [GM19, The-
orem 1.3] for pointwise limits).

Proof. Since u is upper semicontinuous, using the definition of classically psh functions,
we may assume that X is a connected smooth curve over a non-trivially valued field.
We may assume that u is not identically —oo. Then for every strictly k-affinoid domain
U of X and every harmonic function h on U with u < h on dU, we have to show that
u < h holds on U. Since u; — u pointwise and since JU is finite, for any £ > 0 we have
u;—h < eon dU for all j sufficiently large. Since u; —h is a classically psh function by
Proposition 3.5(4) and since the Shilov boundary of U agrees with dU [Thu05, §2.1.2],
the global affinoid maximum principle in Theorem 6.4 shows that u;—h < ¢ on U for all
j sufficiently large. It follows that u —h < ¢ on U, which implies u < h on U since ¢ was
arbitrary. 0J

7. PLURIHARMONIC FUNCTIONS

In this section, we consider a k-analytic space X over any non-Archimedean field k.
Following the discussion of harmonic functions on curves in 3.12, we generalize this
notion as follows to higher dimensions.

Definition 7.1. A function h: X — R is called pluriharmonic if h and —h are classically
psh functions (see Definition 4.1).

Proposition 7.2. Pluriharmonic functions are continuous and have the properties:

(1) (Sheafiness) The pluriharmonic functions form a sheaf on X.

(2) If f eT(X, 0;) then log|f | is pluriharmonic.

(3) (Vector Space) The pluriharmonic functions on X form a real vector space which
we denote by PH(X).

(4) (Limits) If a function h: X — Ris locally a uniform limit of pluriharmonic functions,
then h is pluriharmonic.
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(5) (Maximum Principle) If h € PH(X) and h attains a local extremum at x € Int(X),
then h is constant in a neighborhood of x.

(6) (Extension of Scalars) Let k’/k be an analytic extension field. Then h pluriharmonic
if and only if h o 1y, : X} — R is pluriharmonic.

(7) (Functoriality) Let Y be a k-analytic space and let f : Y — X be a morphism. If
h € PH(X) then ho f € PH(Y), and the converse holds if f is finite and surjective.

Proof 1t is clear that a pluriharmonic function h is continuous as h and —h are upper
semicontinuous. Properties (1), (2), (3), (6) and (7) follow immediately from the corre-
sponding properties of classically psh functions given in Proposition 4.2. In (4), we note
that a uniform limit of pluriharmonic functions can be easily written as a decreasing
(resp. increasing) limit of pluriharmonic functions and hence (4) follows from Proposi-
tion 4.2(4). The maximum principle (5) follows from the maximum principle for classi-
cally psh functions shown in Theorem 6.1. O

From now on, we denote by PH(X) the space of pluriharmonic functions on X. The
affinoid global maximum principle for classically psh functions has the following conse-
quence.

Proposition 7.3. Let X be a k-affinoid space with Shilov boundary I'. Then every plurihar-
monic function takes its global maximum and its global minimum in a Shilov point of X,
and the R-linear map
PH(X) - RFJ h = (h(x))XEF

is injective.

Proof. By definition, the function h: X — R is pluriharmonic if and only if h and —h
are classically psh. It follows from Theorem 6.4 that a pluriharmonic function takes its
maximum and its minimum on the Shilov boundary I'. In particular, a pluriharmonic
function is zero if and only if its restriction to T is zero, which proves the last claim. []

Theorem 7.4. Let X be a quasicompact k-analytic space. Then PH(X) is a finite dimensional
real vector space.

Proof. Using quasicompactness, we can cover X by finitely affinoid subsets U;. Using
Proposition 7.3, we know that PH(U;,) is finite dimensional for every i. Since plurihar-
monic functions are determined by their restrictions to the U,’s, this proves the claim.
For later purposes, we note that the linear map

(7.4.1) PHX) —R', h— (h(x))er
is injective where I is the union of the Shilov boundaries of all U;’s. O

Remark 7.5. Assume that k is non-trivially valued and that X is a quasicompact k-analytic
space. Let X be any formal model of X over the valuation ring k°. Then dim(PH(X)) is
bounded by the number of divisorial points of X associated to X.

Indeed, such a formal model is quasi-compact, hence can be covered by finitely many
formal affine open subsets 4(;. Then the above argument applies to the strictly affinoid
covering U; = 4, , of X. Let T' be the set of divisorial points associated to X. This is just
the union of the Shilov points of the U;’s [GM19, Proposition A.3]. Injectivity of (7.4.1)
leads to the desired bound.
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Theorem 7.6. Let X be a k-analytic space over any non-Archimedean field k, and let
f:X — R be a continuous function. If f is the pointwise limit of a sequence of pluri-
harmonic functions on X, then the convergence is locally uniform and f is a pluriharmonic
function.

Proof. This is a local statement, so we may assume that X is quasicompact. Using the
notation from the proof of Theorem 7.4, injectivity of (7.4.1) shows that
[|h]| = sup [A(x)]
x€rl’

defines a norm on the finite dimensional R-vector space PH(X). Let h,, be a sequence
of pluriharmonic functions converging pointwise to f. Then h,, converges to some h €
PH(X) with respect to the norm || || as the sequence (h,,(x)),cr converges in R" and
hence in every subspace. It follows from Proposition 7.3 that a pluriharmonic function
takes its maximum and its minimum on I' and hence || || is the sup-norm on X. We
conclude that h,, converges uniformly to h on X and hence h = f, proving the claim. [

7.7. In the following, we assume k non-trivially valued. A locally finitely presented
quasicompact formal scheme X over k is called strictly semistable if every x € X has
an open neighborhood {{ admitting an étale morphism

(7.7.1) YP:d— Spf(k°(x0,...,xd)/(xo...xr—n))

for some r < d and some 7 # 0 in the valuation ring k°. Note that strictly semistable
formal schemes are strictly polystable in the sense of [Ber99, Definition 1.2] and that the
generic fiber X is smooth. Berkovich has shown that there is a canonical skeleton S(X) in
X associated to X coming with a canonical deformation retraction 7: X — S(X) [Ber99,
Theorem 5.2]. The skeleton of il is the simplex

S(ﬂ)z{ueR;{)l|u0+---+ur:v(7r)}

which is isomorphic to the standard simplex {y € R, | y; +---+ y, < v(7)} of length
v(m), where v is the valuation of k. The skeleton of X is defined by gluing the skeletons
S(4l) along a formal open covering of X by i’s as above, which gives S(4l) a canonical
triangulation.

Proposition 7.8. Let X be a good, quasicompact, strictly k-analytic space that has a strictly
semistable formal k°-model. Then every pluriharmonic function h on X is R-PL.

Proof. Let X be a strictly semistable formal k°-model of X. Since R-piecewise linearity is a
G-local property with respect to the Grothendieck topology generated by the strictly ana-
lytic domains, we may assume that X is an open subset £l — Spf (k° (xgyeeerxg)/{xg...x,—

n)) asin 7.7, and that X is formal affine. The Shilov points of X are then the vertices of the
simplex S(X). Using that S(X) is a simplex, there is a unique linear function £: S(X) - R
that agrees with h on the vertices. Since 7 can be seen as a tropicalization (see [GRW16,
4.3] for the argument), it is clear that £ o T is R-PL, and since £ o 7 is a linear combina-
tion of pluriharmonic functions (namely, the functions —log |x;| fori =0, ...,d), we see
that £ o T is pluriharmonic by Proposition 7.2(2). By Proposition 7.3, we have h ={ o T,
proving the claim. O
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APPENDIX A. THE TOPOLOGY OF THE UNIT DISK

Let k be a non-archimedean field which might be trivially valued. In this appendix, we
give an elementary description of the topology of the unit disc B,1< = M (k(T)). These are
well-known facts which we present in the way we need in the body of text.

A.1. Arig-point of B is induced by a maximal ideal of k(T). Let k’ be the completion of
an algebraic closure k? of k and let G be the Galois group of k®/k. By [Ber90, 1.3.5] or
[Duc24, (3.1.1.2)], we may write B}{ = B}{,/G as a topological quotient; we denote the
quotient map by 7: B;, — B;. For a rig-point z and 0 < p < 1, we define the closed disc
B.(z, p) with center z and radius p by taking any z’ € m~'(z) and then setting

Bl(zp) = ni({x' € BL | |(T —=)(x)| < p}).

This is a closed set in Bi which does not depend on the choice of 2’ and which contains
the center z. We often simply write B'(z, p) = B,(z, p). Moreover, we can choose any rig-
point of B'(z, p) as a center. Note that for any rig-point y’ of B, the image 7(B,(y’, p))
is a closed disc B, (z, p) for a suitable rig-point z as center. In the trivially valued case, we
can simply take z = 7t(y’) and in the non-trivially valued case, this follows by density of
rigid points [Ber90, Proposition 2.1.15] in a strictly affinoid space. Similarly, we define
the open disc Bi(z,p) with center z and radius p using |[(T —2’)(x’)| < p as a defining
inequality over k’. The above remarks also apply to open balls. It follows from the
ultrametric triangle inequality that two open or closed balls are either disjoint or one is
contained in the other.

A.2. The topology of the unit disc Bi is well-known. Roughly speaking, it has the struc-
ture of an infinite tree with all branches connected to the Gauss point 1, at the top (see
[Ber90, Example 1.4.4, §4.2] or [Duc24, §3.4] for more details). We call U C B}< a stan-
dard open subset if it has the form U = B, \ | J, B; where B, is either an open ball B, (z, p)
with a rig-point z as center and with p € (0,1) or B, = B}{, and where the B; are finitely
many closed balls with rig-points as centers and with positive radii. Since two discs are
either disjoint or one is contained in the other, we see that the union and the intersec-
tion of two standard open subsets are again standard open subsets. We claim that the
standard open subsets form a basis of topology for B,. In the non-trivially valued case,
this follows from [Ber90, §4.2] using §A.1 to find rig-centers in the balls. In the trivially
valued case, B,1< is the union of closed intervals starting in the Gauss point 1; and ending
in the rig points of B,. The topology is very simple as B; \ {n,} is the topological disjoint
union of the half-open intervals (1);,2z] with z ranging over the rig points of B!. A subset
U of B is an open neighborhood of 7, if and only if U N[7,,z] is open for all rig points
z and equal to [n,,2] except for finitely many z. We refer to [Ber90, Example 1.4.4]
or [BJ18, §1.1.6] for these facts, from which we deduce easily that the standard open
subsets form also a basis of topology in the trivially valued case.

The main result of this appendix is the following lemma.

Lemma A.3. Let B'(z, p) be a closed disc as above and let f(T) be the minimal polynomial
of the center z, i.e., a generator of the corresponding maximal ideal of k(T). Then there is
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a unique r € (0, 1] such that
B'(z,0) = {x €B | If () <r}.

Proof. The argument is similar to the Newton polygon technique from algebraic number
theory. We write f(T) =(T—a,)---(T—ay) for a,,...,a,; € k?. Let k’ be the completion
of the algebraic closure k? as in A.1. We have a,,...,a; € k' by Gauss’ lemma. Let
n: B;, — B, be the structure map, so we have

' (B'(z,p)) ={x' €B,, | Jmin |(T—a)(x)| < p}.

.....

is surjective, it is enough to show that for any x’ € Bi,, the function r(x’) = |f(x’)|

depends only on p(x’) and is strictly increasing in p(x’). Then uniqueness follows from
the obvious fact r(B;) = [0, 1].

We first prove that r(x") depends only on p(x’) for x’ € Bl,. There is a root a of f(T)
in k’ such that

(T =)Dl = min (T —a;)(x)] = p(x');

we define
M:={je{1,...,d} | (T —a)(x) = (T —a)(x)I}.
Clearly, this does not depend on the choice of a. Since p(x’) and r(x’) are invariant
under Gal(k?/k), we may assume that @ = a,. For any j € {1,...,d}, we have
(A3.1) (T— @) < (T —a)(x)| and  |a;—al < (T —a)(x")|

and at most one of the two inequalities can be strict. Indeed, the first inequality is from
the choice of a. The second inequality and the claim about strictness follow from the
ultrametric triangle inequality in #(x’). We deduce from (A.3.1) that for j € M, we
have

la; —al < |(T—a;)(x) = (T —a)(x)| = p(x)
and that for j € {1,...,d} \ M, we have

la;—al = (T —a))(x)] > (T —a)(x)]| = p(x).

Using a = a,, this shows M = {j € {1,...,d} | |a; — ;| < p(x)}, proving that M
depends only on p(x’). Let m be cardinality of M. Then we have

r(x) = 1f (DI =T —a))(x)] - (T — ag)(x) = p(x)" - l—[ |(a; — ay)(xX)],
JEM
which shows that r(x’) depends only on p(x’). To prove that r(x’) is strictly increasing in
o(x"), let x’, y’ € B}, with p(y") > p(x”). To prove r(y") > r(x"), we may again replace
x’, y’ by suitable conjugates to assume p(x’) = |(T —a;)(x")| and p(y") = (T —a;)(¥’)|.
Using the above expression for M, we deduce that M(x") = {j € {1,...,d} | (T —
a;)(x")| = p(x')} satisfies

M(x)={je{1,....d} | lot; — | <p("}.
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Using the same for y’, we deduce M(x’) € M(y’). It remains to prove the inequality in
r(x) =T —a) )X+ (T —ag)(D < r(y) = (T —a)(Y)- - I(T — ag)(y)
which we will show by comparing the factors. For j € M(x’), we use
(T —a;)(x) = p(x") < p(¥y)=I(T —a;)(y)

as M(x") € M(y’). For j € M(y’)\ M(x"), we have |[(T —a;)(x")| > |(T —a,)(x’)|, hence

I(T — aj)(xl)l = |aj —ay| <|(T— aj)()’/)|
by (A.3.1). For j € {1,...,d} \ M(y’), the inclusion M(x") ¢ M(y’) and (A.3.1) show
that

(T — ;) )(x)| = la; — oy | = (T — 2 )(¥)I.
These three displays prove r(x") < r(y’), showing the remaining claim of the lemma. [J
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